
Statistički softver 2
Matematika

EXAMINING THE IMPACT OF
TRADITIONAL BASKETBALL STATS

ON THE GAME OUTCOME

Đorđe Martić, Jovan Samardžić

Mentor - Prof. Bojana Milošević
Faculty of Mathematics, University of Belgrade

1

Abstract

In this research, we will make a statistical model which illustrates bas-
ketball games and predicts the game outcome. Using two machine learning
methods, Decision trees and Random forests, we will examine which tradi-
tional basketball stats have the biggest impact on winning. In an effort to
get more precise results, we will generate three Decision trees with different
training data sizes. Trees will be graphically represented.

Mentioned methods will be implemented using two R packages – rpart
and randomForest, respectively. Data we will use can be found on the
official NBA website.

The results we got tell us that defensive rebounding and three-point per-
centage are key to winning. Assists, turnovers, and personal fouls also af-
fect the game outcome, but they are less impactful. Random forests give a
much better accuracy – around 90%, while Decision trees have accuracies
of around 80%.

Coaches can find our conclusions quite handy, since they can modify
their practice style in a manner to emphasize improving skills which have
an immense influence on winning. Basketball fans can find this project very
useful, too — by interpreting our results correctly, they can have fun trying
to predict which team will win the game.

2

Contents
1 Introduction 4

2 Materials and methods 6
2.1 Data . 6
2.2 Methods . 8

2.2.1 Decision tree . 8
2.2.2 Random forest . 11

3 Results 12
3.1 Decision tree results . 12

3.1.1 Model with 90–10 data split ratio 12
3.1.2 Model with 75–25 data split ratio 13
3.1.3 Model with 60–40 data split ratio 14

3.2 Random forest results . 14

4 Discussion 15

5 Conclusion 16

A Appendix A 18

B Codes 19

C Authors 23

D Acknowledgement 23

3

1 Introduction
In the last decade, we have seen the rise of statistics utilization in basketball [1].
Many teams across the globe, but especially in North America, have recognized
the potential and power of statistical models and started to implement them in
various ways.

For example, many NBA teams executives use them to determine which play-
ers would be a good fit for their team. In other words, they use models to make
decisions on which players to sign. Since players in the NBA are getting paid
millions of dollars per year, statistics can help teams save a lot of money.

Many different projects inspired us to do this research, but one we found very
interesting is Michael Armanious’, Men’s U-Sports Basketball Analysis [2]. The
author had used data collected from Carleton University Raven’s games and had
shown which play styles impact winning games.

The purpose of our project is to determine how much traditional basketball
stats influence winning games and which stat has the biggest influence on the
game outcome. Those stats are:

• Points;

• Field goals – made, attempted & percentage;

• Three-pointers – made, attempted & percentage;

• Free throws – made, attempted & percentage;

• Rebounds – offensive & defensive;

• Assists;

• Steals;

• Blocks;

• Turnovers;

• Personal fouls.

4

To do so, we will use certain machine learning methods - Decision trees and
Random forests. Our goal is to get prediction results as accurate as possible.

Since Random forests are a generalization of Decision trees, they should give
much more accurate results. However, we will implement both, since Decision
tree can be easily visualised and conclusions will be more obvious.

Considering usual accuracies [3] for mentioned methods, we aim to achieve
more than 75% accuracy in predicting with Decision trees and 90% accuracy in
predicting with Random forests.

This research can be very applicable, since coaches can get insight into which
part of the game has the most effect on winning. Eventually, they can adjust prac-
tices, in order to improve specific player skills.

5

2 Materials and methods

2.1 Data
Raw data (figure 1) was collected from the official NBA website [4]. It contains
box scores for each game of the 2020/21 NBA season. Each column represents
a specific stat (e.g. column PF represents the total number of personal fouls the
team committed during one game).

Figure 1: Raw data from NBA.com/stats

Before we dive into implementing methods and start making conclusions, we
first need to sort out the provided data set. Initially, we deleted the following stats
since we did not need them:

• Team: because we are predicting the game outcome based on stats, regard-
less of who is playing;

• Match up: same as above;

• Game date: because it does not affect the outcome in any form;

• MIN : this column is constant and equals 240.

6

After that, we removed every stat which can be represented as function of the
other stats:

• FGM : number of made field goals (FGA · FG%);

• 3PM : number of made three-pointers (3PTA · 3PT%);

• REB: number of total rebounds (OREB +DREB);

Then, we excluded PTS and +/-, because using this information would make
any prediction on outcome trivial (whichever team scores more points, obviously
wins). Also, we decided to exclude FG% as well, since it turns out that its impor-
tance on the outcome is enormous compared to the other stats.

Finally, we notice how each pair of rows of raw data (figure 1) represents the
same game. For example, the first row portrays stats for LAL in their game against
NOP and the second row portrays stats from the same game, but for NOP.

Taking this into account, we created a renewed data set, where each row con-
tains information on a single game and columns represent differences between
corresponding stats.

For example, if first row in our new data set represents LAL vs NOP game,
then:

diffOREB(LALvsNOP) = OREB(LAL) - OREB(PEL).

Figure 2: Working version of our data set

7

2.2 Methods
Earlier, we mentioned we will use two machine learning methods -Decision trees
and Random forests.

Initially, like in every machine learning method, we need to split our data set
into two disjunctive data sets – one for training and one to make predictions of.
We will use three different splits of our data set: 90–10, 75–25 and 60–40.

Before fitting, we inspected the data to make sure that training and prediction
data have a similar distribution of wins and losses.

Note that all of the codings for this research will be coded using R.

2.2.1 Decision tree

Decision tree is a method that makes decisions by generating a binary tree model
in order to perform data classification. It is built by recursively splitting the data
based on a single feature, in a way so that it is as homogeneous as possible.

Figure 3: An example of the decision tree

Here we can see a simple example of a decision tree. At each node, we split the
data according to the value of the certain feature. So first we divide by weather, if
it is cloudy, we will play; if it is rainy our decision will depend on the amount of
wind, if it is windy we will not play but if there is little wind we will. If weather is
sunny, we look at humidity level: if it is high, we will not play, but if not we will.

8

There are various R packages which implement this method, but we opted for
rpart [5].

Function in this package which generates decision tree model is:

rpart(formula, data, ...),

where formula is Y ∼ X, while data is our training data set.
Y represents the variable that we want to predict. In this case, that is WL.
X represents variables that we want the program to learn from. In this case,

we want the program to use all available stats.

This function uses Gini impurity [6] in effort to find out by which stat should
it start splitting our data set. It is calculated by formula:

Gini = 1−
n∑

i=1

p2i ,

where n is the number of different classes (in our case n = 2) and pi is the
probability of a instance from the node belonging to class i. In case every in-
stance belongs the same class, Gini equals 0. In case distribution of the classes is
uniform, Gini reaches its maximum. Of course, smaller values are preferable.

To determine how impactful each feature is in building the model, this function
uses variable.importance parameter. As mentioned in the package long intro
[8]:

”An overall measure of variable importance is the sum of the goodness of split
measures for each split for which it was the primary variable.”

In other words, a variable’s importance is the sum of the improvement in the
overall Gini measure produced by the nodes in which it appears.

9

In order to graphically present our model, we use rpart.plot function, which
is contained in this package, as well.

Figure 4: Node from a decision tree

As we see in figure 4, every node has three values written inside of it. Top
value is letter W or letter L – it tells us if there are more wins or losses in that node.
Middle value is a number between 0 and 1 – it tells us the winning percentage in
that node. Bottom value tells us the percentage of games in this node out of all
games from the initial data set.

On the one hand, we don’t want to have too many leaf nodes, as it complicates
our tree. But on the other hand, we want cross-validation relative error [7] to be
as small as possible. Variable which connects these two is complexity parameter
cp. As noted in package documentation [5]:

“A good choice of cp for pruning is often the leftmost value for which the mean
lies below the horizontal line.”

Figure 5: Example of complexity parameter

For example, on figure 5, good choice of cp would be 0.013.

10

After we determine optimal value of cp, we can now prune our tree. It means
that we will transform it so it has an optimal size for predicting by snipping off the
least important splits.

2.2.2 Random forest

Random forest, like it’s name implies, consists of a large number of individual
decision trees that operate as an ensemble. It is a method that uses boosting on
the decision tree algorithm. Each individual tree in the random forest gives a class
prediction and the class with the most votes becomes our model’s prediction. This
improves the accuracy of the model by doing extra computation. This helps us get
a much more precise model that excludes mistakes that a single tree might make.

Figure 6: An example of the random forest

In order to implement this method, we have used randomForest function from
the package of the same name [9]:

randomForest(formula, data, ntree, ...).

Here, formula and data are the same arguments as from rpart function in
section 2.2.1, while ntree is a number of trees used. In this case, we will use the
default number of trees, which is 500.

For the purpose, we will use importance function, which is similar to
variable.importance from section 2.2.1, but it uses average over all trees in
the forest.

11

3 Results

3.1 Decision tree results
3.1.1 Model with 90–10 data split ratio

Figure 7: Decision tree based on 90% of data set

In Figure 5, we can see visual representation of the decision tree. It implies
that diffDREB and diffThreePpct are the most important stats.

From each leaf node, we can find some information. For example, for the
rightmost leaf, we can see that if diffDREB is greater than 3 and diffThreePpct
is greater than −3.5, the game will result as a win in 92% of times and this occurs
in 32% of the games.

Value of our model’s variable.importance confirms these implications, as
can be seen in the table 1 in appendix A. This tree uses 12 different variables.
Variables diffTOV, diffAST and diffFGA also have significant importance value,
while the others are more or less negligible.

By testing our model on 10000 different 90–10 random splits of data, we have
accomplished mean prediction accuracy of 81.12%, with a standard deviation of

12

around 3.5%. This accuracy is very good for a decision tree, but not great in
general. Finally, different split doesn’t mean different variable.importance –
the order is similar every time and diffDREB is by far the most important.

3.1.2 Model with 75–25 data split ratio

Figure 8: Decision tree based on 75% of data set

The results obtained from this split of data are rather similar to the results we
got bit earlier. This tree uses 9 different variables, of which diffDREB, diffThreePpct
and diffTOV stand out in variable.importance, as can be seen in the table 2 in
appendix A.

Having said that, unsurprisingly, the resemblance between trees on figures 7
and 8 is fairly noticeable.

In the same way, as in the previous model, we have accomplished a prediction
accuracy of 81.13% with a standard deviation of around 2.3%.

13

3.1.3 Model with 60–40 data split ratio

Figure 9: Decision tree based on 60% of data set

In this case, the tree differs from the previous two. It has more nodes, but in
the table 3 in appendix A, we can see that it has 11 important variables, which is
less than our first model.

In the same table, we see that no variable stands out as the most important.
We have diffThreePpct and diffDREB at the top with almost same importance.
Moreover, the other stats are closer to each other.

By testing our model, we have accomplished a prediction accuracy of 80.85%
with a standard deviation of 1.9%.

3.2 Random forest results
Using random forest, with 75–25 split of data, we achieved a prediction accuracy
of 88.52%.

As for variable importance, table 4 in appendix A shows us similar results as
the ones we got with our decision trees. Again, we can see defensive rebounds
and three-point percentage standing out. Also, assists have considerably larger
importance than the rest of the stats.

14

4 Discussion
One thing that shows us the decency of our models is that the same stats are the
most important in each model. However, the importance values are not as close as
we have expected them to be.

In further discussion, we will use results obtained by the random forest model,
as it was the best performing one, and try to come to a conclusion why those stats
were as important.

We notice that defensive rebounding is the stat that has the major impact on
winning. Indirectly, that makes sense - if a team has many defensive rebounds, that
team gets more possessions. And more possessions give more chances of scoring.
Moreover, the greater number of defensive rebounds implies that the opponent
misses many shots. At last, if a team lets their opponents grab plenty of offensive
rebounds instead, that might lead to plenty of second–chance points conceded,
since they are often easy to score.

Next up, three-point percentage is also very impactful. This result was rather
expected, as it is the most effective way to score. Attempted free throws and free
throw percentage come up high as well, as free throws are an opportunity to score
without interference from the defence.

Coming up next, we have assists – shots after a pass are generally less con-
tested and hence have a higher chance of becoming points.

Finally, turnovers being much less impactful than defensive rebounds actu-
ally make sense – turnover only means lost possession, but it does not mean that
opponents scored afterwards. So defensive rebounds lead to two negative effects
and turnover gives only one negative effect.

On the other hand, it is surprising that steals have a lower impact, as they stop
opponents’ attacks and occasionally lead to fast breaks which then frequently lead
to easy points.

15

5 Conclusion
Defensive rebounding has amajor impact on the game outcome. Three-pointers

are also a vital part of the modern game. Our results only confirm that they are
also a crucial factor in winning. Other stats, such as turnovers and assists also have
their impact, but in a much smaller portion.

As for accuracies, we confirmed that Random forests give much more precise
results than Decision trees.

Figure 10: Accuracies based on implemented models

16

In the figure 11, blue points represent win, while red points represent loss. The
first graph shows us the distribution of diffDREB, the second one is the distribu-
tion of diffThreePpct and the last one is the diffPF distribution.

It is fairly noticeable that wins really do have comewith advantage in defensive
rebounding, as we can clearly see that blue points are concentrated on the top.
Similar conclusion can be made for three-point percentage. However, when it
comes to personal fouls, points are more mixed, so this only confirms that fouls
are not as important stat as previous two.

Figure 11: Dependence of WL stat of different stats

In the figure 12, we grouped our data by WL, in effort to see difference which
defensive rebounding can make. Red line shows mean of number of defensive
rebounds in corresponding groups.

Figure 12: Means of diffDREB depending on WL

We completed our initial goal - we did check which traditional basketball stats
influence winning games. Regarding future directions, we could include more
advanced stats, such as deflections or screen assists. In addition, we could include
many more factors, such as match up strength or home-court advantage.

17

A Appendix A

Variable Importance
diffDREB 168.0170
diffThreePpct 83.2751
diffTOV 52.5824
diffAST 30.7807
diffFGA 23.7486
diffSTL 11.4795
diffFTA 7.6791
diffThreePA 6.0762
diffOREB 5.8731
diffPF 4.9288
diffFTpct 3.3042
diffBLK 1.3903

Table 1:

Variable Importance
diffDREB 136.7103
diffThreePpct 58.1982
diffTOV 40.4822
diffAST 24.5910
diffFGA 18.5162
diffSTL 8.7566
diffFTpct 8.4895
diffFTA 6.3285
diffOREB 4.0853
diffBLK 2.6357

Table 2:

Variable Importance
diffThreePpct 83.5401
diffDREB 81.5468
diffAST 41.1398
diffTOV 28.9495
diffFGA 23.3318
diffSTL 15.4113
diffOREB 11.9373
diffFTA 10.5650
diffFTpct 3.9873
diffBLK 3.1119
diffPF 0.9586

Table 3:

Variable Importance
diffDREB 94.4512
diffThreePpct 79.2461
diffAST 48.0623
diffTOV 28.8107
diffFTpct 26.7751
diffFTA 22.4229
diffSTL 21.6588
diffBLK 19.4870
diffPF 17.7972
diffThreePA 16.0133
diffFGA 16.0036
diffOREB 13.6384

Table 4:

18

B Codes
main.R

1 setwd("/Users/jovan.samke/Downloads")
2 source("./libPrimatijada22.R")
3

4 df <- cleanupDataFrame(read_xlsx("./NBA_DataSet_Version1.xlsx"))
5 dfSimple <- simplifyDataFrame(df)
6

7 dt90 <- modelDecisionTree(dfSimple, 0.90, 0.013, 100, 100000)
8 dt75 <- modelDecisionTree(dfSimple, 0.75, 0.027, 100, 100000)
9 dt60 <- modelDecisionTree(dfSimple, 0.60, 0.016, 100, 100000)
10 rf <- modelRandomForest(dfSimple, 0.75, 1000, 500)
11

12 drawAccuracies(c(dt90, dt75, dt60, rf))
13

14 drawGrid(dfSimple)
15

16 drawMeans(dfSimple)

libPrimatijada22.R
1 #install.packages("dplyr")
2 #install.packages("ggplot2")
3 #install.packages("gridExtra")
4 #install.packages("readxl")
5 #install.packages("rpart")
6 #install.packages("rpart.plot")
7 #install.packages("randomForest")
8

9 library("dplyr")
10 library("ggplot2")
11 library("gridExtra")
12 library("readxl")
13 library("rpart")
14 library("rpart.plot")
15 library("randomForest")
16

17 cleanupDataFrame <- function(df){
18 df <- na.omit(df)
19 df <- df[-c(1:3, 5:7, 9, 10, 13, 18, 24)]
20 colnames(df)[c(1, 3:4, 6)] <- c("WL", "ThreePA", "ThreePpct",

"FTpct")
21

19

22 df$WL <- as.factor(df$WL)
23

24 df[14] <- 1:2160
25 colnames(df)[14] <- "index"
26 dfopp <- df[df$index%%2==0,]
27 dfteam <- df[df$index%%2!=0,]
28 colnames(dfopp) <- paste(replicate(14, "opp"), colnames(dfopp)

, sep="")
29 df <- cbind(dfteam, dfopp)
30 df <- df[-c(14,15,28)]
31

32 return(df)
33 }
34

35 simplifyDataFrame <- function(df){
36 df2 <- data.frame(df[, 1:13])
37 df2[-1] <- df2[-1] - df[14:25]
38 colnames(df2) <- paste(replicate(12, "diff"), colnames(df2),

sep="")
39 colnames(df2)[1] <- "WL"
40

41 return(df2)
42 }
43

44 generateTrainingData <- function(df, q, s){
45 set.seed(s)
46 index <- sample(1:nrow(df), size = q*nrow(df))
47 trainingData <- dfSimple[index ,]
48 predictionData <- dfSimple[-index ,]
49

50 prop.table(table(trainingData$WL))
51 prop.table(table(predictionData$WL))
52

53 lista <- list(trainingData , predictionData);
54 return(lista)
55 }
56

57 calculateAccuracy <- function(model, predictionData){
58 results <- predict(model, predictionData , type = "class")
59 return(sum(results == predictionData$WL)/nrow(predictionData))
60 }
61

62 modelDecisionTree <- function(df, q, cp, N, MAX){
63 accuracies <- replicate(N, 0)
64 for (i in 1:N){

20

65 lista <- generateTrainingData(df, q, sample(MAX, 1))
66 trainingData <- lista[[1]]
67 predictionData <- lista[[2]]
68

69 model <- rpart(WL ~ ., data = trainingData)
70 #print(model$variable.importance)
71 #cat("\n")
72 #plotcp(model, minline=TRUE, upper = "size")
73 model <- prune.rpart(model, cp)
74 #rpart.plot(model)
75 accuracies[i] <- calculateAccuracy(model, predictionData)
76 }
77

78 print(mean(accuracies))
79 print(sd(accuracies))
80

81 return(mean(accuracies))
82 }
83

84 modelRandomForest <- function(df, q, s, n){
85 lista <- generateTrainingData(dfSimple , q, s)
86 trainingData <- lista[[1]]
87 predictionData <- lista[[2]]
88

89 model <- randomForest(WL~., data = trainingData , ntree=n)
90 model$importance
91 print(model)
92

93 return(calculateAccuracy(model, predictionData))
94 }
95

96 drawGrid <- function(df){
97 df <- cbind(df, index = 1:length(dfSimple$WL))
98

99 p1 <- ggplot(df, aes(x = index, y = diffDREB)) +
100 geom_point(aes(col = WL)) +
101 labs(x = "", colour = "Win/Lose")
102

103 p2 <- ggplot(df, aes(x = index, y = diffThreePpct)) +
104 geom_point(aes(col = WL)) +
105 labs(x = "", colour = "Win/Lose")
106

107 p3 <- ggplot(df, aes(x = index, y = diffPF)) +
108 geom_point(aes(col = WL)) +
109 labs(x = "", colour = "Win/Lose")

21

110

111 grid.arrange(p1, p2, p3, ncol=3)
112 }
113

114 drawMeans <- function(df){
115 df <- cbind(df, index = 1:length(dfSimple$WL))
116

117 df <- df %>%
118 group_by(WL) %>%
119 mutate(meanDREB = mean(diffDREB))
120

121 ggplot(df) +
122 geom_point(aes(x = index, y = diffDREB)) +
123 geom_smooth(aes(x = index, y = meanDREB), col = "red") +
124 facet_wrap(~WL)
125 }
126

127 drawAccuracies <- function(accuracies){
128 accuracies <- round(accuracies , digits = 4)*100
129 model <- c("dt90", "dt75", "dt60", "rf")
130 podaci <- data.frame(model, accuracies)
131

132 ggplot(podaci, aes(x = model, y=accuracies)) +
133 geom_col(aes(fill=model)) +
134 geom_text(position=position_dodge(0.5), vjust=-0.25, label=

accuracies) +
135 xlab("Model") +
136 ylab("Accuracy")
137 }

22

C Authors
Author 1:

• Name: Đorđe Martić;

• City: Belgrade;

• Address: Sinđelićeva 36;

• Year of birth: 2001;

• Year of studies : third;

• University of Belgrade, Faculty of Mathematics

Autor 2:

• Name: Jovan Samardžić;

• City: Belgrade;

• Address: Rige od Fere 6;

• Year of birth: 2000;

• Year of studies : third;

• University of Belgrade, Faculty of Mathematics

D Acknowledgement
We would like to thank our mentor Bojana Milošević, who encouraged us to work
on this project. She also reviewed it and suggested some new ideas. Without her
help, this research would not be the same.

We would also like to thank our friend Tamara Topalov for grammar checking.

23

References
[1] https://towardsdatascience.com/nba-data-analytics-changing-the-game-

a9ad59d1f116

[2] https://bookdown.org/michael_arman7/Basketball-Analysis/

[3] https://www.dovepress.com/the-random-forest-model-has-the-best-accuracy-
among-the-four-pressure–peer-reviewed-fulltext-article-RMHP

[4] https://www.nba.com/stats/teams/boxscores/?Season=2020-
21&SeasonType=Regular%20Season

[5] https://cran.r-project.org/web/packages/rpart/rpart.pdf

[6] Suthaharan, S., 2016. Decision tree learning. In Machine Learning Models
and Algorithms for Big Data Classification (pp. 237-269). Springer, Boston,
MA.

[7] Turney, P., 1994. A theory of cross-validation error. Journal of Experimental
& Theoretical Artificial Intelligence, 6(4), pp.361-391.

[8] https://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf

[9] https://cran.r-project.org/web/packages/randomForest/randomForest.pdf

24

