GENERALIZING LOGIC PROGRAMMING TO ARBITRARY SETS OF CLAUSES

Slaviša B. PREŠIĆ
Faculty of Mathematics, University of Belgrade,
Studentski trg 16, 11000 Belgrade, Yugoslavia

Abstract. In this paper, which is a brief version of [3], we state how one can extend Logic Programming to any set of clauses.

Keywords: Logic Programming, deduction, completeness

The basic part of Logic Programming, particularly Prolog, in fact deals with the following two inference rules:

1. $\mathcal{F}, p \vdash p$
2. $\mathcal{F}, p \lor \neg q_1 \lor \ldots \lor \neg q_k \vdash p \leftarrow \mathcal{F} \vdash q_1, \ldots, q_k$

(where \mathcal{F} is a set of (positive) Horn formulas and p is any atom, i.e. a propositional letter)

Indeed, the informal meaning of rule (1) is:

An atom p is a consequence of a set of clauses if p is an element of that set.

Similarly for rule (2) we have this meaning:

An atom p is a consequence of a set $\mathcal{F}, p \lor \neg q_1 \lor \ldots \lor \neg q_k$ (i.e. of the set $\mathcal{F}, q_1 \land \ldots \land q_k \Rightarrow p$), if q_1, \ldots, q_k are consequences of the set \mathcal{F}.

In the sequel we use the following facts from mathematical logic (see [2]):

3. The notion of formal proof in the case of propositional logic (assuming we have chosen some tautologies as axioms, and that modus ponens is the only inference rule).
(4) **The Deduction theorem**: \(\mathcal{F}, A \vdash B \iff \mathcal{F} \vdash A \Rightarrow B \) where \(\mathcal{F} \) is a set of propositional formulas and \(A, B \) are some such formulas.

(5) **Completeness Theorem**: Any propositional formula is a logical theorem if and only if it is a tautology.

We also use the symbols \(\bot, \top \) which can be introduced by the following definitions

\[\bot \text{ stands for } a \land \neg a; \quad \top \text{ stands for } a \lor \neg a \]

where \(a \) is an atom (chosen arbitrarily). Further, let \(\mathcal{F} \) be any set of propositional formulas and \(\psi \) a formula or one of the symbols \(\bot, \top \). Then a **sequent** is any expression of the form \(\mathcal{F} \vdash \psi \), with the meaning:

\(\psi \) is a logical consequence of \(\mathcal{F} \)

Lemma 1. Let \(\mathcal{F} \) be any set of propositional formulas not containing the atom \(p \), and let \(\phi_1(p), \phi_2(p), \ldots \) be propositional formulas containing \(p \). Then we have the following equivalences

(6) (i) \(\mathcal{F}, \phi_1(p), \phi_2(p), \ldots \vdash p \iff \mathcal{F}, \phi_1(\bot), \phi_2(\bot), \ldots \vdash \bot \)

(ii) \(\mathcal{F}, \phi_1(p), \phi_2(p), \ldots \vdash \neg p \iff \mathcal{F}, \phi_1(\top), \phi_2(\top), \ldots \vdash \bot \)

Proof. First we give proof of the part of (i). Then, we have the following 'implication-chain':

\(\mathcal{F}, \phi_1(p), \phi_2(p), \ldots \vdash p \)

\[\longrightarrow \text{For some formulas } f_1, \ldots, f_r \text{ of } \mathcal{F} \text{ and some formulas } \phi_{i_1}(p), \ldots, \phi_{i_s}(p) \]
we have: \(f_1, \ldots, f_r, \phi_{i_1}(p), \ldots, \phi_{i_s}(p) \vdash p \)
(Finiteness of the propositional proof)

\[\longrightarrow \vdash f_1 \Rightarrow \ldots \Rightarrow f_r \Rightarrow \phi_{i_1}(p) \Rightarrow \ldots \Rightarrow \phi_{i_s}(p) \Rightarrow p \]
(By (4))

\[\longrightarrow \text{Formula} \]

\[f_1 \Rightarrow \ldots \Rightarrow f_r \Rightarrow \phi_{i_1}(p) \Rightarrow \ldots \Rightarrow \phi_{i_s}(p) \Rightarrow \top \]

is a tautology
(By (5))

\[\longrightarrow \text{Formula} \]

\[f_1 \Rightarrow \ldots \Rightarrow f_r \Rightarrow \phi_{i_1}(\bot) \Rightarrow \ldots \Rightarrow \phi_{i_s}(\bot) \Rightarrow \bot \]

is a tautology

\[^1 \text{In fact, only the } \longrightarrow \text{part is the deduction theorem. But, the } \iff \text{part is almost trivial.} \]
Formula
\[
f_1 \Rightarrow ... \Rightarrow f_r \Rightarrow \phi_{i1}(\bot) \Rightarrow ... \Rightarrow \phi_{is}(\bot) \Rightarrow \bot
\]
is a logical theorem
(By (5))

Formula
\[
f_1, ..., f_r, \phi_{i1}(\bot), ..., \phi_{is}(\bot) \vdash \bot
\]
holds.
(By (4))

\[
\mathcal{F}, \phi_1(\bot), \phi_2(\bot), ..., \vdash \bot
\]
which completes the proof. Proof of the \(\leftarrow \) part of (i) reads:
\[
\mathcal{F}, \phi_1(\bot), \phi_2(\bot), ..., \vdash \bot
\]

Formula
\[
f_1, ..., f_r, \phi_{i1}(\bot), ..., \phi_{is}(\bot) \vdash \bot
\]
we have: \(f_1, ..., f_r, \phi_{i1}(\bot), ..., \phi_{is}(\bot), ..., \vdash \bot \)
(Finiteness of every formal proof)

\[
\vdash f_1 \Rightarrow ... \Rightarrow f_r \Rightarrow \phi_{i1}(\bot) \Rightarrow ... \Rightarrow \phi_{is}(\bot) \Rightarrow \bot
\]
(By (4))

Formula
\[
f_1 \Rightarrow ... \Rightarrow f_r \Rightarrow \phi_{i1}(\bot) \Rightarrow ... \Rightarrow \phi_{is}(\bot) \Rightarrow \bot
\]
is a tautology
(By (5))

Formula
\[
f_1 \Rightarrow ... \Rightarrow f_r \Rightarrow \phi_{i1}(p) \Rightarrow ... \Rightarrow \phi_{is}(p) \Rightarrow p
\]
is a tautology

Formula
\[
f_1 \Rightarrow ... \Rightarrow f_r \Rightarrow \phi_{i1}(p) \Rightarrow ... \Rightarrow \phi_{is}(p) \Rightarrow p
\]
is a logical theorem
(By (5))
Formula
\[f_1, \ldots, f_r, \phi_{i1}(p), \ldots, \phi_{is}(p) \vdash p \]
holds.
(By (4))

\[\mathcal{F}, \phi_1(p), \phi_2(p), \ldots \vdash p \]
which completes the proof of (i).
We have omitted a proof of (ii) because (ii) can be proved in a similar way as (i).

Notice that Lemma 1 can be expressed by the following words:

A literal \(\psi \) is a logical consequence of the given set if and only if the corresponding set is inconsistent.

Now we prove the following lemma.

Lemma 2. The equivalence

\[(7) \quad \mathcal{F}, p_1 \lor \ldots \lor p_k \vdash \bot \quad \implies \quad \mathcal{F} \vdash \neg p_1, \ldots, \mathcal{F} \vdash \neg p_k \]

(where \(p_i \) is any literal)

is true.

Proof. We have the following 'equivalence-chain':
\[\mathcal{F}, p_1 \lor \ldots \lor p_k \vdash \bot \]

\[\iff \mathcal{F} \vdash (p_1 \lor \ldots \lor p_k \implies \bot) \]

(By (4))

\[\iff \mathcal{F} \vdash (\neg p_1 \land \ldots \land \neg p_k) \]

(Using a well-known tautology)

\[\iff \mathcal{F} \vdash \neg p_1, \ldots, \mathcal{F} \vdash \neg p_k \]

which completes the proof.

Besides (6) and (7) we emphasize the following obvious equivalences

\[(8) \quad \vdash \top \iff \mathcal{F}, \bot \vdash \bot \]

\[(9) \quad \mathcal{F}, \top \vdash A \iff \mathcal{F} \vdash A \]

(\(A \) is a literal or the symbol \(\bot \))

\(^2\)A literal is an atom or the negation of an atom

\(^3\)i.e. one of the sets \(\mathcal{F}, \phi_1(\bot), \phi_2(\bot), \ldots \) or \(\mathcal{F}, \phi_1(\top), \phi_2(\top), \ldots \)
Suppose now that \(\mathcal{F} \) is a given set of clauses and \(\psi \) is a literal or \(\bot \). Is it possible that using the equivalences (6), (7), (8), (9) one can establish whether or not \(\psi \) is a logical consequence of \(\mathcal{F} \)? In order to answer this we introduce the following inference rules\(^4\)

(R1) \(\mathcal{F}, \bot \vdash \bot \iff \vdash \top \)

(R2) \(\mathcal{F}, \phi_1(p), \phi_2(p), \ldots \vdash p \iff \mathcal{F}, \phi_1(\bot), \phi_2(\bot), \ldots \vdash \bot \)
\(\mathcal{F}, \phi_1(p), \phi_2(p), \ldots \vdash \neg p \iff \mathcal{F}, \phi_1(\top), \phi_2(\top), \ldots \vdash \bot \)

(\(\phi_i(p) \) is any clause containing \(p \))

(R3) \(\mathcal{F}, p_1 \lor \ldots \lor p_k \vdash \bot \iff \mathcal{F} \vdash \neg p_1, \ldots, \mathcal{F} \vdash \neg p_k \)

(where \(p_i \) is any literal)

(R4) \(\mathcal{F}, \top \vdash A \iff \mathcal{F} \vdash A \)

(\(A \) is a literal or the symbol \(\bot \))

We emphasize that in the sequel for the set \(\mathcal{F} \) we suppose that it does not contain a clause of the form \(\ldots q \lor \neg q \ldots \), where \(q \) is any atom. Namely, such a formula is equivalent to \(\top \), consequently it should be omitted\(^5\). Similarly, if it happens that by applying rule (R2) some clause becomes equivalent to \(\top \) then we will also omit it.

Roughly speaking rules (R1),(R2),(R3),(R4) are used as follows:

We start with a question (a sequent) of the form \(\mathcal{F} \vdash \psi \) and apply rules (R2),(R3),(R4) several times. If at some step we can apply rule (R1), the procedure stops with the conclusion that \(\psi \) is a logical consequence of \(\mathcal{F} \). However, if at some step we obtain the sequent \(\vdash \bot \) (then \(\mathcal{F} \) is an empty set) the procedure stops with the conclusion that \(\psi \) is not a logical consequence of \(\mathcal{F} \).}

Example 1. Answer the following questions:

1) \(p \vdash p \)? 2) \(p, q \vdash p \)? 3) \(\vdash p \)? 4) \(q \vdash p \)?

5) \(\neg q \lor p, q \lor p \vdash p \)? 6) \(p, \neg p \lor q \lor \neg r, p \lor q \lor r \lor s, p \lor r \lor t \vdash \bot \)?

where \(p, q, r, s, t \) are atoms.

Answer.

1) Applying (R2) we obtain the sequent \(\bot \vdash \bot \) and by (R1) we get the sequent \(\vdash \top \) so the answer is: Yes.

\(^4\)We point out that the set \(\mathcal{F} \) may be also an empty set.

\(^5\)This is compatible with rule (R4)
2) Applying (R2) we obtain a new question, i.e. the sequent \(\bot, q \vdash \bot \), and now applying (R1) we obtain the sequent \(\vdash \top \) so the answer is: Yes.
3) Applying (R2) we obtain the sequent \(\vdash \bot \) so the answer is: No.
4) By (R2) we obtain the sequent \(q \vdash \bot \) and after that by (R3) we obtain the sequent \(\vdash \lnot q \). Finally, by (R2) we obtain the sequent \(\vdash \bot \) such that the answer is: No.
5) By (R2) we obtain the sequent \(\lnot q, q \vdash \bot \). Now by (R3) applied to the literal \(\lnot q \) we obtain the sequent \(q \vdash q \), further by (R2) we obtain the sequent \(\bot \vdash \bot \) and finally by (R1) we obtain the sequent \(\vdash \top \) so the answer is: Yes.
6) Now by (R3) applied to clause \(p \) we obtain the sequent \(\lnot p \lor q \lor \lnot r, p \lor \lnot q \lor s, p \lor s \lor \lnot t \vdash \lnot p \).

By (R2) (and (R4) applied twice) we obtain the sequent \(q \lor \lnot r \vdash \bot \).

At this step applying (R3) we obtain two new sequents, i.e. questions \(\vdash \lnot q \) ? and \(\vdash r \) ?

The answer to the first question is No, so the final answer is also: No.

Concerning rules (R1)-(R4) we have this lemma.

Lemma 3. (Soundness of rules (R1)-(R4)). Let \(\mathcal{F} \) be any set of clauses. Suppose that we start with a sequent \(\mathcal{F} \vdash \psi \), where \(\psi \) is a literal or the symbol \(\bot \). If using rules (R1)-(R4) we obtain the sequent \(\vdash \top \) or the sequent \(\vdash \bot \), then \(\psi \) is / is not a logical consequence of set \(\mathcal{F} \), respectively.

Proof follows immediately from the fact that rules (R1)-(R4) are based on logical equivalences (6)-(9).

Let now \(\mathcal{F} \vdash \psi \) be any sequent. By \(Val(\mathcal{F} \vdash \psi) \) we denote its truth value, defined by:

- If \(\psi \) is a logical consequence of set \(\mathcal{F} \) then \(Val(\mathcal{F} \vdash \psi) \) is true
- otherwise \(Val(\mathcal{F} \vdash \psi) \) is false.

According to this definition and to rules (R1)-(R4), i.e. to equivalences (6)-(9) we have the following equalities

\[(10) \ Val(\vdash \top) = \text{true} \]
\[Val(\vdash \bot) = \text{false} \]
\[Val(\mathcal{F}, \bot \vdash \bot) = \text{true} \]
\[Val(\mathcal{F}, \top \vdash \psi) = Val(\mathcal{F} \vdash \psi) \]
\[Val(\mathcal{F}, \phi_1(p), \phi_2(p), \ldots \vdash p) = Val(\mathcal{F}, \phi_1(\bot), \phi_2(\bot), \ldots \vdash \bot) \]
\[Val(\mathcal{F}, \phi_1(p), \phi_2(p), \ldots, \vdash \neg p) = Val(\mathcal{F}, \phi_1(T), \phi_2(T), \ldots, \vdash \bot) \]

(\(\phi_i(p)\) is any clause containing \(p\))

\[Val(\mathcal{F}, p_1 \lor \ldots \lor p_k, \vdash \bot) \]

\[= Val(\mathcal{F}, \vdash \neg p_1) \text{ and } \ldots \text{ and } Val(\mathcal{F}, \vdash \neg p_k) \]

(where \(p_i\) is any literal, i.e. an atom or the negation of an atom)

Suppose that \(\mathcal{F}\) is a finite set. Then, in fact, these equalities define the function \(Val\) recursively on the number of all member of set \(\mathcal{F}\). Consequently, these equalities suggest how to calculate \(Val(\mathcal{F}, \vdash \psi)\). In other words we have the following assertion:

(11) If \(\mathcal{F}\) is a finite set then one can effectively calculate \(Val(\vdash \psi)\), i.e. establish whether or not \(\psi\) is a logical consequence of set \(\mathcal{F}\).

Next we will prove the following basic theorem.

Theorem 1. (Completeness) Let \(\mathcal{F}\) be a set of some clauses and \(\psi\) a literal or the symbol \(\bot\). Then:

\(\psi\) is a logical consequence of set \(\mathcal{F}\) if and only if starting with \(\mathcal{F}, \vdash \psi\) and applying rules (R1)-(R4) a finite number of times one can obtain the sequent \(\vdash T\).

Proof. The if - part follows immediately from Lemma 3. To prove the only if - part suppose now that \(\psi\) is a logical consequence of set \(\mathcal{F}\). Then \(\psi\) is a logical consequence of some finite subset \(A\) of set \(\mathcal{F}\) (for: every formal proof is finite). Next, by (11) we conclude that starting with the sequent \(A, \vdash \psi\) and applying rules (R1)-(R4) a finite number of times one can obtain the sequent \(\vdash T\). Consequently, also starting with the sequent \(\mathcal{F}, \vdash \psi\) and applying rules (R1)-(R4) a finite number of times one can obtain the sequent \(\vdash T\). The proof is complete.

REFERENCES

