A COMPLETENESS THEOREM FOR ONE CLASS OF PROPOSITIONAL CALCULI

Slaviša B. Prešić

(Received February 19, 1970)

Let $L = \{p_i \mid i \in I\}$ be a given set of so called propositional letters and $O = \{o_j \mid j \in J\}$ another set of operation symbols. Associated with each operation symbol o_j there is a non-negative integer $l(o_j)$ called the length of o_j. We denote by C the set of all operation symbols having the length zero. The elements of C we call constant symbols, and the other elements of O are called connective symbols. For the sets L and O we suppose:

$$L \cap O = \emptyset, \quad L \cup C \neq \emptyset, \quad O \setminus C \neq \emptyset.$$

Thus, the set L can be the empty set. From the elements of the sets L and O we define formulae in the usual way. Namely, the set \mathcal{F} of all formulae is the smallest set (a subset of the set of all strings built up from the members of $L \cup O$) which satisfies the following conditions

(1) (i) $L \subseteq \mathcal{F}$

(ii) $C \subseteq \mathcal{F}$

(iii) If $\varphi_1, \ldots, \varphi_n \in \mathcal{F}$ and $l(o_j) = n$, then $o_j \varphi_1 \cdots \varphi_n \in \mathcal{F}$

The signs P_1, P_2, P_3, \ldots are used to denote arbitrary formulae (i.e. as variables for formulae). From these symbols and the elements of O formula schemes are built up. Namely, if in the above definition of formulae the part (i) is replaced by $\{P_1, P_2, \ldots\} \subseteq \mathcal{F}$, we obtain the definition of the set all formula schemes. Further, let Ax be a nonempty set of formula schemes, and R a set of certain rule-schemes of inference, each of the form

(2) $\frac{\Phi_1, \ldots, \Phi_n}{\Psi}$ \quad ($n \geq 1$)

where $\Phi_1, \ldots, \Phi_n, \Psi$ are formula schemes.
By the sets Ax and R is defined, a so called propositional calculus. More precisely a propositional calculus may be defined as the ordered pair (Ax, R). Let

$$(3) \quad \varphi(P_1, P_2, \ldots, P_k)$$

be any element of Ax, where all the elements of the set $\{P_1, P_2, \ldots\}$ occurring in (3) are among P_1, P_2, \ldots, P_k. If $\varphi_1, \varphi_2, \ldots, \varphi_k$ are any formulae, then the string

$$(4) \quad \varphi(\varphi_1, \varphi_2, \ldots, \varphi_k)$$

is a formula as well. The formulae as (4), for which we also say that they are of the form (3), we call axioms (of the calculus (Ax, R)). By Ax we denote the set of all axioms. According to the given definition of the sets of formulae and formula schemes the following statement is true:

$$(5) \quad \text{In any axiom its propositional letters may be replaced by any formulae. In such a way from an axiom we again obtain an axiom.}$$

Let \mathcal{P} i.e. (Ax, R) be a propositional calculus. By $\text{Th} (\mathcal{P})$ we denote the set of all its theorems, and by $\vdash F$ we denote the fact that the formula F is a theorem (of \mathcal{P}).

Now we define a model for \mathcal{P}. It is a usual definition. Namely, let M be a nonempty set, and let 1 denote one of its elements. Further, with each o_j we associate an object δ_j in the following way:

If $o_j \subseteq C$, then δ_j is a certain chosen element of M.

If $o_j \subseteq O \setminus C$, and $l(o_j) = n$, then δ_j is an n-ary operation of M.

By the set M and the operations δ_j an algebra M is determined. The set M is its domain. On certain conditions we say that an algebra M is a model for a propositional calculus. Namely, that is exactly in the case when:

$$(6) \quad \text{Each axiom } f \text{ is valid in the algebra } M, \text{ i.e. the equality } \bar{f} = 1 \text{ is satisfied for all possible substitutions of the elements of } M \text{ for the letters } p_i \text{ (occurring in the formula } f). \text{ By } \bar{f} \text{ we denote the string obtained from } f \text{ by replacing: } o_j \text{ by } \delta_j.$$

$$(7) \quad \text{The rule schemes of } \mathcal{P} \text{ are satisfied by } M \text{ in the sense that validity is preserved by them; i.e. if (2) is any rule schema then the implication}$$

$$\text{If } \overline{\Phi_1} = 1, \ldots, \overline{\Phi_n} = 1, \text{ then } \overline{\Psi} = 1$$

is true for all $P_1, P_2, \ldots \subseteq M$.

From the conditions (6), (7), it is immediate that each member of the set $\text{Th}(\mathcal{P})$, i.e. any theorem of \mathcal{P}, is also valid in the model M. It may happen that for a certain algebra M we have (Completeness theorem):

1) Therefore the propositional letters may be called variables.

2) If $l(o) = 0$, then δ_j is called a operation of the length zero. The element 1 is a operation of such kind,
A completeness theorem for one class of propositional calculi

(8) Any formula \(f \) of the propositional calculus \(\mathcal{P} \) is a theorem if and only if \(f \) is valid in the algebra \(M \).

In such a case we say that the algebra \(M \) is an adequate model for \(\mathcal{P} \).

In this paper we give a necessary and sufficient condition for \(\mathcal{P} \) to have an adequate model.

In order to express this condition, we define a new formal theory \(\mathcal{P}(=, 1) \) in the following way.

Denote by \(O_1 \) the set \(O \cup \{1\} \) and let by definition 1 be \(C_0 \) (provided \(C_0 \subseteq O \)). By definition (1) we obtain the so called terms of \(\mathcal{P}(=, 1) \).

The formulae of \(\mathcal{P}(=, 1) \) are strings of the form \(t_1 = t_2 \), where \(t_1, t_2 \) are terms.

The formula schemes of \(\mathcal{P}(=, 1) \) are, shortly, strings which can be obtained from the formulae of \(\mathcal{P}(=, 1) \) by all possible replacements of elements of the set \(L \) by elements of the set \(\{P_1, P_2, \ldots, P_n, \ldots\} \).

The axiom schemes of \(\mathcal{P}(=, 1) \) are:

(9) all formula schemes of the form \(f = 1 \), where \(f \) is any axiom schema of \(\mathcal{P} \) (provided that 1 is included as a member of \(C \))

(10) all formula schemes of the form \(t = t \).

The rule schemes of \(\mathcal{P}(=, 1) \) are:

(11) \(\varphi_1 = 1, \ldots, \varphi_n = 1 \), whenever \(\Phi \), \(\psi \) is a rule schema of \(\mathcal{P} \).

(12) \(t_1 = t_2 \), \(t_1 = t_2, t_2 = t_3 \), \(t_1 = t_1', \ldots, t_n = t_n' \)

\(t_2 = t_1 \), \(t_1 = t_3 \), \(o_j t_1 \cdots t_n = o_j t_1' \cdots t_n' \)

where \(t_1, t_2, \ldots \) are any terms, \(o_j \) any \(n \)-ary operation symbol.

We also note that:

(13) In the case of the theory \(\mathcal{P}(=, 1) \) it is supposed that \(P_1, P_2, \ldots \) may be replaced by any terms. In such a way, for example, from axiom-schemes of \(\mathcal{P}(=, 1) \) we get the axioms of \(\mathcal{P}(=, 1) \).

There is an interesting connection between the theories \(\mathcal{P}, \mathcal{P}(=, 1) \):

(14) An algebra is a model for the calculus \(\mathcal{P} \) if and only if \(M \) is a model\(^3\) for the theory \(\mathcal{P}(=, 1) \).

This immediately follows from the definitions of models for \(\mathcal{P}(=, 1) \), and from (10), (12).

Further, we note that the theory \(\mathcal{P}(=, 1) \) always has at least one adequate algebra. Namely, these are the so called free algebras. One of such algebras \(\Phi \) can be described in the following way.

\(^3\) As a matter of fact, its normal model, i.e. a model in which \(= \) is interpreted as the equality,
Let T be the set of all terms. On the set T define the relation \sim as follows:

\begin{equation}
(15) \quad t_1 \sim t_2 \text{ if and only if } \quad \vdash \quad t_1 = t_2 \quad \text{ in } \mathcal{P}(-, 1)
\end{equation}

i.e. $t_1 \sim t_2$ if and only if t_2 can be obtained from t_1 using the axioms of the forms (9), (10) and the rules (11), (12). The relation \sim is an equivalence relation. This follows from the axiom of the form $t = t$, and the rules

\[
\begin{align*}
\frac{t_1 = t_2}{t_2 = t_1}, & \quad \frac{t_1 = t_2, t_2 = t_3}{t_1 = t_3}
\end{align*}
\]

The members of T/\sim i.e. of the quotient set will be denoted by C_t, where $t \in T$. These classes are the only elements of the algebra Φ. Its operations δ_j are defined as follows:

If $l(o_j) = 0$, then $\delta_j \overset{\text{def}}{=} C_{o_j}$. So $\overline{1} = C_1$.

If $l(o_j) = n (> 0)$, then δ_j is the n-ary operation determined by

\begin{equation}
(16) \quad \delta_j(C_{t_1}, \ldots, C_{t_n}) = C_{o_j t_1 \ldots t_n}
\end{equation}

In the definition (16) the result, i.e. $\delta_j(C_{t_1}, \ldots, C_{t_n})$ is defined by t_1, \ldots, t_n, i.e. by certain members of the classes C_{t_1}, \ldots, C_{t_n} respectively. Logical correctness of this definition follows from the rule schema

\[
\begin{align*}
& t_1 = t'_1, \ldots, t_n = t'_n \\
& o_j t_1 \cdots t_n = o_j t'_1 \cdots t'_n
\end{align*}
\]

The set T/\sim and the operation δ_j determine the algebra Φ.

The equality (16) can be generalized in the following way. By

\[
t(a_1, \ldots, a_n, o_{j_1}, \ldots, o_{j_m})
\]

denote a term, where a_1, \ldots, a_n as well as o_{j_1}, \ldots, o_{j_m} are all elements of the set L i.e. of the set O_1, occurring in the term. Then by induction on m the following equality may easily be proved

\begin{equation}
(17) \quad t(C_{a_1}, \ldots, C_{a_n}, \delta_{j_1}, \ldots, \delta_{j_m}) = C_t(a_1, \ldots, a_n, o_{j_1}, \ldots, o_{j_m})
\end{equation}

We now give a proof that the algebra Φ is an adequate model of the theory $\mathcal{P}(-, 1)$.

The formula

\[
t_1(a_1, \ldots, a_n, o_{t_1}, \ldots, o_{j_{m_1}}) = t_2(b_1, \ldots, b_{n_2}, o_{k_1}, o_{k_2}, \ldots, o_{k_{m_2}})
\]

is valid in Φ.
if and only if the equality
\[t_1(C_{x_1}, \ldots, C^{\overline{n_1}}, \delta_j, \ldots, \delta_{j_1}) = t_2(C_{y_1}, \ldots, C^{\overline{n_2}}, \delta_k, \ldots, \delta_{k_1}) \]
holds in \(\Phi \) for all \(x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2} \in T \).

if and only if the equality
\[C_{t_1}(x_1, \ldots, x_{n_1}, o_{j_1}, \ldots, o_{j_1}) = C_{t_2}(y_1, \ldots, y_{n_2}, o_k, \ldots, o_{k_1}) \]
holds in \(\Phi \) for all \(x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2} \in T \).

if and only if
\[t_1(x_1, \ldots, x_{n_1}, o_{j_1}, \ldots, o_{j_1}) \sim t_2(y_1, \ldots, y_{n_2}, o_k, \ldots, o_{k_1}) \]
for all \(x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2} \in T \).

if and only if
\[\vdash t_1(x_1, \ldots, x_{n_1}, o_{j_1}, \ldots, o_{j_1}) = t_2(y_1, \ldots, y_{n_2}, o_k, \ldots, o_{k_1}) \]
\(\mathcal{P}(=, 1) \)
for all \(x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2} \in T \).

if and only if
\[\vdash t_1(a_1, \ldots, a_{n_1}, o_{j_1}, \ldots, o_{j_1}) = t_2(b_1, \ldots, b_{n_2}, o_k, \ldots, o_{k_1}) \]
\(\mathcal{P}(=, 1) \)

The last step in the proof is based on the fact that in any theorem of \(\mathcal{P}(=, 1) \), say \(\varphi(a_1, a_2, \ldots) \), where \(a_1, a_2, \ldots \in L \), the propositional letters \(a_1, a_2, \ldots \) may be replaced by any terms (see (13)).
Now we prove our main result.

Theorem. For a propositional calculus \(\mathcal{P} \) there is an adequate algebra if and only if the theory \(\mathcal{P}(=, 1) \) is not a creative extension of \(\mathcal{P} \), i.e. for every formula \(f \) of \(\mathcal{P} \) the equivalence\(^a\) is true

\[
\vdash f \quad \text{if and only if} \quad \vdash f = 1 \quad \text{in} \quad \mathcal{P}(=, 1)
\]

\(^a\) The implication

\[\vdash f, \quad \text{then} \quad \vdash f = 1 \quad \text{in} \quad \mathcal{P}(=, 1) \]

is true. Therefore the equivalence (18) may be reduced to the following condition

There is no formula \(f \) of \(\mathcal{P} \) such that

\[\vdash f = 1, \text{ but not } \vdash f \quad \text{in} \quad \mathcal{P}(=, 1) \]
Proof. First, suppose that $\mathcal{P} (=, 1)$ is a creative extension of \mathcal{P}. Then there is a formula f of \mathcal{P} such that:

$$\vdash f = 1 \text{ and not } \vdash f \quad \mathcal{P} (=, 1)$$

Let us also suppose that the calculus \mathcal{P} has an adequate algebra, say M. This algebra is a model of the theory $\mathcal{P} (=, 1)$ as well. Therefore, it follows:

$$f = 1 \text{ is valid in } M$$

Hence, we infer that $\vdash f$. But from $\vdash f$ and not $\vdash f$ we conclude that the implication

\mathcal{P} has an adequate model

$$\Rightarrow \mathcal{P} (=, 1) \text{ is not a creative extension of } \mathcal{P}$$

is true.

Second, suppose that $\mathcal{P} (=, 1)$ is not a creative extension of \mathcal{P}. According to the given proof there is an algebra Φ being an adequate algebra of $\mathcal{P} (=1)$. But this algebra is adequate for \mathcal{P} as well, which follows from the proof:

Let $f(a_1, \ldots, o_{j_1}, \ldots)$ be any formula of \mathcal{P}. Then:

$$f(a_1, \ldots, o_{j_1}, \ldots) \text{ is valid in } \Phi$$

if and only if the equality

$$f(C_{x_1}, \ldots, o_{j_1}, \ldots) = C_1$$

holds in Φ for all $x_1, \ldots \in T$ if and only if the equality

$$C_f(x_1, \ldots, o_{j_1}, \ldots) = C_1$$

holds in Φ for all $x_1, \ldots \in T$ if and only if

$$\vdash f(x_1, \ldots, o_{j_1}, \ldots) = 1 \quad \mathcal{P} (=, 1)$$

hold in Φ for all $x_1, \ldots \in T$ if and only if

$$\vdash f(a_1, \ldots, o_{j_1}, \ldots) = 1 \quad \mathcal{P} (=, 1)$$

if and only if

$$\vdash f(a_1, \ldots, o_{j_1}, \ldots)$$