The twistor space of a four-dimensional manifold with a neutral signature

Srdjan Vukmirović

AMS Classification: 81R25, 53C28
email: vsrdjan@matf.bg.ac.yu
Address:
Ohridska 9/4
11080 Zemun
YUGOSLAVIA

Abstract
In this paper we investigate the twistor space \(Z(X) \) of a four-dimensional oriented manifold \(X \) with a metric \(g \) of the neutral signature, using the spinor technique. An almost complex structure \(J \) on \(Z(X) \) is defined and proved that anti-self-duality of \((X, g) \) is necessary and sufficient for the integrability of \(J \). Some important examples of the twistor spaces are considered in details. We also define a family \(g_\lambda \) of metrics on \(Z(X) \) and prove results analogous to the Riemannian case.

1 Introduction

The basic idea of the Penrose’s twistor programme was to reformulate the problems of the geometry of a real manifold \(X \) into appropriate problems of the complex manifold \(Z(X) \) associated to \(X \). The idea turned out to be very fruitful.

The twistor space of a Riemannian oriented four-dimensional manifold \((X, g)\) was defined in [AHS] as a total space of a bundle \(Z(X) \) whose fiber \(Z_x \) over a point \(x \in X \) is the set of all almost complex structures of the tangent space \(T_x X \) compatible with the metric \(g \) and orientation of \(X \). On such defined manifold \(Z(X) \) the authors defined an almost complex structure which turned to be integrable, i.e. \((Z(X), J)\) is a complex three-dimensional manifold, if and only if \((X, g)\) is self-dual. Further investigations of such twistor spaces are given in [Fri80] and [Fri82] where curvature properties of a family of a metrics \(g_\lambda, \lambda \in \mathbb{R} \) on \(Z(X) \) are studied. The construction of the twistor space \(Z(X) \) is generalized to the case of a quaternionic manifold \(X \) by Salamon in [Sal82]. The notion of the twistor space of a four-dimensional manifold was generalized to the even dimensional (not necessarily Riemannian) manifold in [BO’R]. Special
cases are the four dimensional Riemannian and the quaternionic case. General considerations of the twistor spaces are also given in [Y] and [AG].

The twistor space of a four-dimensional manifold \((X, g)\) with a metric of signature \((3, 1)\) was studied in [Sato]. By reason of similar properties of groups \(SO(4)\) and \(SO(2, 2)\) the twistor space of a neutral four-dimensional manifold \(X\) (with a metric of the signature \((2, 2)\)) enjoys similar properties as Riemannian. As far as we know, it was defined only in [Sal]. The bundle of so called bila-grangian structures over a neutral four-dimensional manifold was investigated in [GJRM].

In this paper we investigate the twistor space of a neutral four-dimensional manifold using the spinor technique from [Fri80] and [Fri82]. This paper has the following structure. Section 2 describes a set of almost complex structures at a point of manifold-the fiber of \(Z(X)\). Section 3 introduces additional notation. Section 4 gives a relation between the almost complex structures on a manifold \(X\) and the sections of its spinor bundle. Section 5 contains a main theorem concerning integrability of certain almost complex structure \(J\) on \(Z(X)\). Section 6 contains an example of the twistor space of the neutral sphere and neutral complex projective plane.

2 Almost complex structures

In case of a real four-dimensional vector space \(\mathbb{R}^{0,4} = (\mathbb{R}^{4}, g) \) with a positive definite scalar product \(g \) of the signature \((0, 4)\) we define an almost complex structure \(J : \mathbb{R}^{4} \to \mathbb{R}^{4} \) as a linear map with the following properties:

1. \(J^2 = -I_d \)
2. \(J \) is an isometry i.e. \(g(Jx, Jy) = J(x, y) \),
3. \(J \) preserves the fixed orientation of the vector space \(\mathbb{R}^{4} \).

Set \(\mathcal{J} \) of all such complex structures is sphere \(S^2 \). It naturally carries the complex structure of the complex projective space \(S^2 = \mathbb{CP}^1 = SU(2)/S^1 \). Because of the transitive action of the isometry group \(SO(4) \) on it, \(\mathcal{J} \) can be seen as a homogenous space \(\mathcal{J} = SO(4)/H \).

It is easy to see that in case of vector space \(\mathbb{R}^{1,3} \) with a metric \(g \) of the signature \((1, 3)\), i.e. \((-+++)\) it is not possible to define an almost complex structure \(J \) with the properties 1)-3), or similar.

The case of the real vector space \(\mathbb{R}^{2,2} \) with a metric \(g \) of neutral signature \((2, 2) = (-+++)\) is similar to the definite case. In this case we have notion of space and time orientation of the vector space \(\mathbb{R}^{2,2} \). Isometries with a positive determinant can preserve or reverse both of them at the same time. Hence we have to modify requirement 3) into the following condition:

3‘) \(J \) preserves the fixed orientation of \(\mathbb{R}^{2,2} \) and its space and time orientation.

For the chosen spacelike vector \(e_1 \), \(J(e_1) \) must belong to its pseudoortogonal complement \(e_1^\perp = \mathbb{R}^{2,1} \), or more precisely to one sheet (in order to preserve space orientation) of the pseudosphere of the unit spacelike vectors. We see that

2
it is a submanifold of $\mathbb{R}^{2,1}$ with a negative definite induced metric. Preserving time orientation completely determines the almost complex structure J so we have

$$J = \{(x_1, x_2, x_3) \in \mathbb{R}^{2,1} \mid - x_1^2 - x_2^2 + x_3^2 = 1, \ x_3 > 0 \}.$$

We have choose e_1 to be spacelike since the almost complex structures can be described in terms of the anti-self-dual two-forms which form a vector space of the signature $(2,1)$, as we will see later.

As in the definite case we can represent J as a homogenous space $SO^+(2,2)/H$ of the group $SO^+(2,2)$ of isometries of $\mathbb{R}^{2,2}$ with a positive determinant preserving both time and space orientation, over its subgroup H.

Since J will be the fiber of our twistor bundle, which we want to be a complex manifold, we will show that it is a homogenous space of the group $SU(1,1)$ and investigate it in more details, emphasizing its complex structure. Denote by $I_{p,q}$ the diagonal matrix

$$I_{p,q} := \text{diag}\{-1, \ldots, -1, 1, \ldots, 1\}.$$

Pseudounitary group $U(p,q)$ is group of the complex linear transformations preserving the hermitian scalar product given by the matrix $I_{p,q}$

$$U(p,q) := \{ A \in M(p+q, \mathbb{C}) \mid A^\dagger I_{p,q} A = I_{p,q} \},$$

and special pseudounitary group is its subgroup

$$SU(p,q) := \{ A \in U(p,q) \mid \det A = 1 \}.$$

Theorem 2.1 Space J of all almost complex structures satisfying 1), 2) and 3') is the homogenous space $SU(1,1)/U(1)$ on which $SU(1,1)$ acts by the conjugation.

Proof:

Because of the properties 1), 2) and 3') the matrix J of any almost complex structure has to be of the form:

$$J = \begin{pmatrix} 0 & \mu_1 & \mu_2 & \mu_3 \\ \mu_1 & 0 & -\mu_3 & \mu_2 \\ -\mu_3 & \mu_2 & 0 & \mu_1 \\ \mu_1 & \mu_3 & -\mu_1 & 0 \end{pmatrix}, \ \mu_1^2 - \mu_2^2 - \mu_3^2 = 1, \ \mu_1 > 0,$$

or in the complex notation

$$J = \begin{pmatrix} i\mu_1 & \bar{\mu} \\ \mu & i\mu_1 \end{pmatrix}, \ \mu = \mu_2 + i\mu_3 = |\mu|e^{im}.$$

Any complex structure J can be obtained using the conjugation $J = A^{-1}J_0A$ by the matrix $A \in SU(1,1)$, from the complex structure J_0

$$J_0 := \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.$$
In fact, the matrix A is given by:

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} -ie^{i(m-\varphi)}\sqrt{\mu_4 + 1} & e^{-i\varphi}\sqrt{\mu_4 - 1} \\ ie^{i(m-\varphi)}\sqrt{\mu_4 - 1} & e^{i\varphi}\sqrt{\mu_4 + 1} \end{pmatrix}, \quad \varphi, \Psi \in \mathbb{R}, \quad \frac{\pi}{2} + \varphi + \Psi = m. $$

The stability subgroup of J_0 is $U(1)$, so we finally have $J = SU(1, 1)/U(1)$.

We see that space of the almost complex structures \mathcal{J} have the same homogenous representation as the set of all positive definite complex lines in the neutral complex vector space $\mathbb{C}^{1,1}$.

Now, we are going to investigate the homogenous space $SU(1, 1)/U(1)$ on a Lie algebra level. Its easy to check that

$$su(1, 1) = \left\{ \begin{pmatrix} it & z \\ \bar{z} & -it \end{pmatrix} \mid t \in \mathbb{R}, \quad z \in \mathbb{C} \right\}. $$

Lie algebra s^1 of stationary group S^1 can be seen like a subalgebra of $su(1, 1)$ in the following way

$$s^1 = \left\{ \begin{pmatrix} it & 0 \\ 0 & -it \end{pmatrix} \mid t \in \mathbb{R} \right\}. $$

We obtain the reductive decomposition $su(1, 1) = n + s^1$ of Lie algebra $su(1, 1)$ where subspace n represent the tangent space in a point of a manifold

$$n = \left\{ n(z) := \begin{pmatrix} 0 & z \\ \bar{z} & 0 \end{pmatrix} \mid z \in \mathbb{C} \right\}. $$

We naturally define the almost complex structure $j : n \rightarrow n$ by

$$j(n(z)) := n(iz). \quad (1) $$

The negative definite scalar product induced on m is given by

$$< n(z), n(w) > := -\frac{1}{2} \text{tr}(n(z)n(w)). \quad (2) $$

3 (Anti-)self-dual manifolds in signature $(2, 2)$

Let $X^{2,2} = (X, g)$ be an oriented pseudo-Riemannian manifold of the signature $(2, 2)$, i.e. $(-+ + +)$. Locally, there exist an oriented pseudoorthonormal frame e_1, e_2, e_3, e_4,

$$e_6 := g(e_6, e_6), \quad e_1 = -1 = e_2, \quad e_3 = 1 = e_4 $$

such that e_1, e_2 are time oriented and e_3, e_4 are space oriented. Let e^1, e^2, e^3, e^4 denotes its dual coframe such that $\mathcal{O} = e^1 \wedge e^2 \wedge e^3 \wedge e^4$ gives an orientation on $X^{2,2}$.

4
For any forms ν, η from space $\Lambda^i := \Lambda^i_x X^{2,2}$ of i-forms at a point $x \in X^{2,2}$ we can define their scalar product in the following way

$$(\nu, \eta)_x := \sum_{1 \leq j_1, \ldots, j_i \leq 4} \epsilon_{j_1} \cdots \epsilon_{j_i} \nu(e_{j_1}, \ldots, e_{j_i}) \eta(e_{j_1}, \ldots, e_{j_i})_x.$$

We will be especially interested in the space of two forms

$\Lambda^2 = \langle e^{12}, e^{13}, e^{14}, e^{23}, e^{24}, e^{34} \rangle$,

where we use notation $e^{ij} := e^i \wedge e^j$, $1 \leq i < j \leq 4$. It is easy to calculate their scalar products

$$(e^{ij}, e^{kl}) = \begin{cases}
\epsilon_i \epsilon_j & \text{if } (i, j) = (k, l) \\
0 & \text{otherwise.}
\end{cases}$$

Hence, Λ^2 is a six dimensional vector space of the signature $(4,2)$. We recall a definition of the Hodge star operator

$\ast : \Lambda^i \to \Lambda^{4-i}$, $\nu \wedge \ast \eta := (\nu, \eta) \mathcal{O}$.

One can check that \ast is a self-adjoint operator with respect to the scalar product (\cdot, \cdot) satisfying $\ast \circ \ast = Id$ on two forms. This involutivity is true in the Riemannian case unlike in case of the signature $(3,1)$ where Hodge operator satisfies the relation $\ast \circ \ast = -Id$.

Because of the involutivity one can decompose space Λ^2 of two forms into the direct sum of $+1$-eigenspace Λ^2_+ and -1-eigenspace Λ^2_-, i.e.

$$\Lambda^2 = \Lambda^2_+ \oplus \Lambda^2_-.$$

Λ^2_+ (resp. Λ^2_-) is so called space of self-dual (resp. anti-self-dual) forms. Here are their bases together with the notation which we will use

$$\Lambda^2_+ = \langle e^{12} + e^{14}, e^{13}, e^{24}, e^{23} - e^{14} \rangle,$$

$$\Lambda^2_- = \langle e^{12} - e^{14}, e^{13}, -e^{24}, e^{23} + e^{14} \rangle.$$

One can check that these are pseudoortonormal basises and that both Λ^2_+ and Λ^2_- are vector spaces of the signature $(2,1)$. If we denote by ∇ the Levi-Civita connection of metric g then the curvature tensor R is defined by

$$R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z,$$

with the components $R_{ijkl} := g(R(e_i, e_j)e_k, e_l)$.

We define the Ricci tensor

$$R_{ij} := \sum_k \epsilon_k R_{ikkj}$$

which turns out to be self-adjoint with respect to g and the scalar curvature τ as the trace of the Ricci tensor

$$\tau := \sum_i \epsilon_i R_{ii} = \sum_{i,j} \epsilon_i \epsilon_j R_{jij}.$$

5
We say that a manifold $X^{2,2}$ is an *Einstein space* if the Ricci tensor is proportional to the metric tensor g (in that case the proportional factor is constant over $X^{2,2}$).

The curvature tensor can be seen like a bundle morphism $R : \Lambda^2 \to \Lambda^2$ given by

$$R(e^{ij}) = \sum_{k<l} \epsilon_k \epsilon_l R_{ijkl} e^{kl}.$$

One can show that R is self-adjoint with respect to the metric in $\Lambda^2 X$. With respect to the decomposition $\Lambda^2 = \Lambda^2_+ \oplus \Lambda^2_-$ it has the following block-matrix form

$$R = \begin{pmatrix} A & B \\ D & C \end{pmatrix},$$

where $A : \Lambda^2_+ \to \Lambda^2_+$ and $C : \Lambda^2_- \to \Lambda^2_-$ are self-adjoint endomorphisms and $D = B^* : \Lambda^2_+ \to \Lambda^2_-$ is map adjoint to B. Following [Bese] we have further decomposition

$$R = \begin{pmatrix} 0 & B \\ D & 0 \end{pmatrix} + \begin{pmatrix} A + \frac{\tau}{12} & 0 \\ 0 & C + \frac{\tau}{12} \end{pmatrix} - \frac{\tau}{12} I_6$$

where

$$W = W_+ \oplus W_- = (A + \frac{\tau}{12}) \oplus (C + \frac{\tau}{12})$$

is Weil tensor.

It is self-adjoint, traceless, commutes with Hodge star operator, have the same symmetry properties like the curvature tensor and is invariant to a conformal changes of metric.

We say that a manifold $X^{2,2}$ is *self-dual* (resp. *anti-self-dual*) if $W_- = 0$ (resp. $W_+ = 0$). One can show the following proposition

Lemma 3.1 Manifold $X^{2,2}$ is anti-self-dual if and only if following relations holds

$$\begin{align*}
\frac{\tau}{6} &= R_{2112} + R_{4334} - 2(R_{1324} - R_{1423}) \\
\frac{\tau}{6} &= -R_{3113} - R_{4224} + 2R_{1324} \\
\frac{\tau}{6} &= -R_{3223} - R_{4114} - 2R_{1423} \\
0 &= -R_{2113} + R_{1334} + R_{1224} - R_{2443} \\
0 &= R_{1223} + R_{3334} + R_{2114} + R_{1443} \\
0 &= -R_{1332} - R_{3224} + R_{3114} + R_{1442}.
\end{align*}$$

Notice that previous six equations are dependent. One can use only five of them, but we found that six are more convenient.
4 The description of almost complex structures in terms of spinors

In this section we are going to prove one-to-one correspondence between almost complex structures on a manifold \(X\) and sections of bundle of the projective spinors.

4.1 The spinor representation of a group \(Spin(2,2)\)

Let \(C_{2,2}\) denote the Clifford algebra of the real vector space \(\mathbb{R}^{2,2}\) with a metric of the signature \((2,2)\). It is by definition an algebra with a unity generated by pseudoortonormal vectors \(e_1, e_2, e_3, e_4\) satisfying the algebra relations

\[
e_i \cdot e_j + e_j \cdot e_i = -2\epsilon_{ij}\delta_{ij}.
\]

In our four-dimensional case its complexification \(\mathbb{C}C_{2,2}\) is isomorphic (like a vector space) to the complex matrix algebra \(M(4,\mathbb{C}) = M(2,\mathbb{C}) \otimes M(2,\mathbb{C})\). One can check that an algebra isomorphism \(H : \mathbb{C}C_{2,2} \to M(4,\mathbb{C})\) is given by the mapping

\[
H(e_1) := iE \otimes U, \quad H(e_2) := iE \otimes V, \quad H(e_3) := U \otimes T, \quad H(e_4) := V \otimes T.
\]

Vectors \(u(\epsilon_1, \epsilon_2) = u_{\epsilon_1} \otimes u_{\epsilon_2}, \quad \epsilon_1, \epsilon_2 \in \{1, -1\}, \quad u_1 = \begin{pmatrix} 1 \\ 0 \\ -i \\ 1 \end{pmatrix}, \quad u_{-1} = \begin{pmatrix} 1 \\ -i \\ 0 \\ 1 \end{pmatrix}\) form a basis of the vector space \(\mathbb{C}^4\).

The action of \(H(\mathbb{C}C_{2,2})\) on \(\mathbb{C}^4 = \mathbb{C}^2 \otimes \mathbb{C}^2\) is given by

\[(A \otimes B)(u \otimes v) := Au \otimes Bv, \quad A \otimes B \in M(2,\mathbb{C}) \otimes M(2,\mathbb{C}), \quad u \otimes v \in \mathbb{C}^2 \otimes \mathbb{C}^2.\]

Vectors

\[u(\epsilon_1, \epsilon_2) = u_{\epsilon_1} \otimes u_{\epsilon_2}, \quad \epsilon_1, \epsilon_2 \in \{1, -1\}, \quad u_1 = \begin{pmatrix} 1 \\ 0 \\ -i \\ 1 \end{pmatrix}, \quad u_{-1} = \begin{pmatrix} 1 \\ -i \\ 0 \\ 1 \end{pmatrix}\]

form a basis of the vector space \(\mathbb{C}^4\).

The action of \(x \in \mathbb{C}C_{2,2}\) on \(v \in \mathbb{C}^4\) we will denote by

\[x \cdot v := H(x)(v).\]

Now, we decompose \(\Delta = \Delta^+ \oplus \Delta^-\) where

\[\Delta^+ = \langle u(1, 1), u(-1, -1) \rangle\]

\[\Delta^- = \langle u(-1, 1), u(1, -1) \rangle.\]

Following [Baum] we introduce a Hermitian scalar product in \(\Delta\) such that basis \(u(\epsilon_1, \epsilon_2)\) is pseudoortonormal and

\[\|u(\epsilon_1, \epsilon_2)\|^2 := \epsilon_2.\]
In that way both Δ^+ and Δ^- become the complex vector spaces of the real signature $(2,2)$. We proceed with a standard definition of the spin group

$$\text{Spin}(2,2) := \{ x \cdot y \mid x, y \in \mathbb{R}^{2,2}, \ ||x||^2 = \pm 1 = ||y||^2 \} \subset \mathbb{C}^{2,2}. $$

The Lie algebra of group $\text{Spin}(2,2)$ is a linear hull

$$\text{spin}(2,2) = \langle \{ e_i \cdot e_j \mid 1 \leq i < j \leq 4 \} \rangle \subset \mathbb{C}^{2,2}. $$

We will denote the restriction of the representation \mathcal{H} on $\text{Spin}(2,2)$ by the same letter. Since \mathcal{H} is linear, its differential $\mathcal{H}^* : \text{spin}(2,2) \to \mathfrak{gl}(\Delta)$ satisfies $\mathcal{H}^* = \mathcal{H}$. One can prove that \mathcal{H} is an exact unitary representation of the group $\text{Spin}(2,2)$, i.e. $\mathcal{H}(\text{Spin}(2,2)) \subset SU(2,2)$. Moreover, noticing that \mathcal{H} preserves the decomposition $\Delta = \Delta^+ \oplus \Delta^-$ we can decompose the representation \mathcal{H} into the direct sum of two representations

$$\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^- : \text{Spin}(2,2) \to SU(\Delta^+) \oplus SU(\Delta^-) = SU(1,1) \oplus SU(1,1).$$

Mapping $\rho : \text{Spin}(2,2) \to SO(2,2)$ given by

$$\rho(y)x := y \cdot x \cdot y^{-1}, \ y \in \text{Spin}(2,2), \ x \in \mathbb{R}^{2,2}$$

is the double covering homomorphism. This facts become more clear after showing that $\rho(y)$ represent a reflection of $\mathbb{R}^{2,2}$ with respect to the hyperplane with pseudonormal vector y.

Lie algebra of the Lie group $SO(2,2)$ is

$$\text{so}(2,2) = \langle \{ E_{ij} := \varepsilon_i M_{ji} - \varepsilon_j M_{ij} \mid 1 \leq i < j \leq 4 \} \rangle, \quad (3)$$

where M_{ij} is a matrix whose all elements are zero except the element in i-th row and j-th column which is equal one.

The differential $\rho_* : \text{spin}(2,2) \to \text{so}(2,2)$ is given by

$$\rho_*(e_i \cdot e_j) = 2E_{ij},$$

since $\rho(y)$ represent the reflection with respect to the hyperplane with normal vector y.

Now we have a composition of two mappings

$$\text{SO}(2,2) \xrightarrow{\rho} \text{Spin}(2,2) \xrightarrow{\mathcal{H}} SU(1,1).$$

by which the group $\text{SO}(2,2)$ acts (see section 2) on the set of all almost complex structures $\mathcal{J} = SU(1,1)/S^1$. It’s not difficult to calculate the Lie algebra h^\pm of the isotropy group $H^\pm \subset \text{SO}(2,2)$, of that action

$$h^\pm = (\mathcal{H}^\pm \circ \rho^{-1})_*^{-1}(s^1).$$
is
\[h^\pm = \{ \sum_{i<j} a_{ij} E_{ij} \mid a_{14} \pm a_{23} = 0, \ a_{13} \mp a_{24} = 0 \}. \]

If we denote by \(n^\pm \) its complement in \(so(2, 2) \) we have
\[so(2, 2) = h^\pm \oplus n^\pm. \]

We can carry the natural complex structure \(J \) given by the formula (1) from \(P(\Delta^\pm) \) to the complex structure \(J^\pm \) on \(n^\pm \):
\[
\begin{align*}
 j^\pm(E_{14} \pm E_{23}) &= E_{13} \mp E_{24} \\
 j^\pm(E_{13} \mp E_{24}) &= -(E_{14} \pm E_{23}).
\end{align*}
\]

4.2 A description of almost complex structures as sections of \(P^- \)

Denote by \((Q, \pi, X^{2,2}, SO(2, 2))\) the principal \(SO(2, 2) \) bundle of the manifold \(X^{2,2} \). Recall that a spin structure \((\tilde{Q}, \pi, X^{2,2}, Spin(2, 2))\) is a principal \(Spin(2, 2) \) bundle together with a principal bundle homomorphism \(H : \tilde{Q} \to Q \) such that
\[
H(\tilde{q} \cdot x) = H(\tilde{q}) \cdot \rho(x), \ x \in Spin(2, 2), \ \tilde{q} \in \tilde{Q},
\]
where multiplication \(\cdot \) denotes an action of the structure group on the bundle. Not all manifolds admit a spin structure, but exactly those with vanishing second Stiefel-Whitney class.

In the previous section we said that the group \(SO(2, 2) \) acts on the projectivization \(P(\Delta^\pm) \) of the spinor bundle by the conjugation. Hence, we can consider the fiber bundle
\[P^\pm = Q \times_{SO(2, 2)} P(\Delta^\pm). \]

Recall that by a definition bundle \(P^\pm \) have the same transition functions as \(Q \) and that its fiber is set of equivalence classes \(\{ [g, v] \mid g \in Q, \ v \in P(\Delta^\pm) \} \) where the relation of the equivalence is given by \((g, v) \sim (gh^{-1}, hv), \ h \in SO(2, 2). \)

Locally, in some region \(U \subset X^{2,2} \) diffeomorphic to \(\mathbb{R}^4 \), we can always choose some spin structure \((\tilde{Q}, \pi, U, Spin(2, 2))\) which determines the spinor bundles
\[S^\pm_U := \tilde{Q} \times_{Spin(2, 2)} \Delta^\pm, \]
which are vector bundles with the canonical projection onto corresponding projectivizations
\[h : (S^\pm \setminus 0)_U \to P^\pm_U. \]

For every section \(\Phi^\pm \) of the projective spinor bundle \(P^\pm \), i.e. the mapping
\[\Phi^\pm : X^{2,2} \supset U \to P^\pm, \]
choose a section \(\tilde{\Phi}^\pm \) of the spinor bundle \((S^\pm \setminus 0)_U \) such that \(h(\tilde{\Phi}^\pm) = \Phi^\pm \).
After choosing such sections, using Clifford multiplication, we get the following isomorphism
\[(TX^{2,2})_U \ni t \mapsto t \cdot \tilde{\Phi}^\pm \in (S^\pm \setminus 0)_U\]
between vector fields and spinors.

By reason of that isomorphism, for every section Φ^\pm we can carry the natural almost complex structure from S^\pm (which fiber is a complex vector space) to obtain an almost complex structure $J^{\Phi^\pm} : T(X^{2,2})_U \to T(X^{2,2})_U$ of the tangent space. Namely, we define
\[J^{\Phi^\pm}(t) \cdot \tilde{\Phi}^\pm := i(t \cdot \tilde{\Phi}^\pm). \tag{6}\]
This definition of J^{Φ^\pm} does not depend of the choice of $\tilde{\Phi}^\pm$, so it is well defined not only over U, but globally over $X^{2,2}$.

Theorem 4.1 Let Φ^\pm be a section in the projective spinor bundle P^\pm. Then

1. J^{Φ^\pm} is an almost complex structure (with properties 1) and 2) from the section 2) which preserves space and time orientation.

2. J^{Φ^-} induces given orientation on $X^{2,2}$ while J^{Φ^+} induces the opposite orientation.

3. Set of the all almost complex structures inducing given (resp. opposite) orientation is parameterized by the sections of Φ^- (resp. Φ^+).

5 An almost complex structure on P^- and its integrability

We have described the projective spinor bundle $P^- = Q \times_{SO(2,2)} P(\Delta^-)$ of a manifold $X^{2,2}$ and have related its sections to the almost complex structures on $X^{2,2}$. Now we are going to define a natural almost complex structure J on it and to show the main result - that J is integrable (i.e. (P^-, J) is a complex manifold) if and only if $X^{2,2}$ is anti-self-dual.

The Levi-Civita connection on the principal $SO(2,2)$ bundle Q over $X^{2,2}$ induces decomposition
\[TP^- = T_h P^- \oplus T_v P^- \tag{7}\]
of the tangent space of the bundle P^- into its vertical and horizontal component.

Every vector field X on P can be uniquely decomposed as a sum of its horizontal and vertical part
\[X = X_h + X_v.\]
We will denote by $\sigma(X) \in T_h P^-$ the fundamental vector field corresponding to the vector X from the tangent space n of $SU(1,1)/S^1$.

We are going to define an almost complex structure J on TP^- first on the vertical and then on the horizontal part.
Since the fiber $SU(1,1)/S^1$ of the bundle P^- carries the natural almost complex structure given by (1) which is invariant under the $SO(2,2)$ action we can choose it to be a vertical component of the almost complex structure J

$$J(\sigma(X)) := \sigma(j(X)).$$

Recall that sections $\Phi^- : X^{2,2} \to P^-$ of P^- parameterize almost complex structures on $X^{2,2}$. For a horizontal vector v in a point $p \in P^-$ we define $J(v)$ using any section Φ^- satisfying $\Phi^-(\pi(p)) = p$, as a unique horizontal vector such that

$$\pi_*J(v) = J^{\Phi^-}(\pi(p))\left(\pi_*(t)\right),$$

independently of the section Φ^-. Roughly speaking, we have defined an almost complex structure in a point $p \in P^-$, as those structure, parameterized by the p in the horizontal part and canonically in the vertical part of the tangent space T_pP^-.

Theorem 5.1 J is integrable (ie. P^- is a complex manifold) if and only if the manifold $X^{2,2}$ is anti-self-dual.

Since the notion of anti-self-duality and self-duality can be interchanged simply by changing the orientation of the manifold $X^{2,2}$ theorem holds for a self-dual manifold with the opposite orientation.

6 Examples and remarks

Here are given two basic examples- the twistor space of the neutral complex projective plane and the neutral four-dimensional sphere. They are anti-self-dual and hence their twistor spaces are complex manifolds. A natural family $g_\lambda, \lambda \in \mathbb{R}$ of metrics on the twistor space P^- is defined and stated its curvature properties similar to those in Riemannian case given in [Fri82].

The complex projective plane (set of negative definite lines in the complex space $\mathbb{C}^{2,1}$) is a homogenous space

$$\mathbb{C}P^{1,1} = SU(2,1)/U(1,1).$$

From the Theorem 2.1 we know that the group $SU(1,1)$ acts transitively by the conjugation on the set \mathcal{J} of almost complex structures of the space $\mathbb{R}^{2,2}$, so it does a bigger group $U(1,1) = SU(1,1) \times U(1)$. The group $SU(2,1)$ acts transitively on the twistor space $P^- (\mathbb{C}P^{1,1})$. An action of the group $SU(2,1)$ on the twistor space

$$P^- (\mathbb{C}P^{1,1}) = \{(x, J_x) \mid x \in \mathbb{C}P^{1,1}, J_x \in \mathcal{J}(T_x \mathbb{C}P^{1,1}) = \mathcal{J}\},$$

defined by

$$A \cdot (x, J_x) = (Ax, A^{-1}J_x A), \ A \in SU(2,1)$$

11
is transitive. The isotropy group of this action is $U(1) \times U(1)$ and hence we have

$$P^-(\mathbb{C}P^{1,1}) = SU(2, 1)/(U(1) \times U(1)).$$

We see that the twistor space of the neutral complex projective plane is a non-compact flag manifold.

The neutral sphere $S^{2,2}$ can be represented like a hypersurface

$$S^{2,2} = \{(x_1, ..., x_5) \in \mathbb{R}^{2,3} \mid 1 = -x_1^2 - x_2^2 + x_3^2 + x_4^2 + x_5^2\}$$

of $\mathbb{R}^{2,3}$ (diffeomorphic to $\mathbb{R}^2 \times S^2$).

Because of the transitive isometric action of $SO(2, 3)$ it can be seen as a homogeneous space

$$S^{2,2} = SO^+(2, 3)/SO^+(2, 2).$$

Here $SO^+(p, q)$ denotes the connected component of unity of the group $SO(p, q)$, that is, the group of those isometries of $\mathbb{R}^{p,q}$ which preserves both time and space orientation. By definition of the almost complex structure the group $SO^+(2, 2)$ acts transitively by the conjugation on the set \mathcal{J} of almost complex structures. Like in the previous case the twistor space is a homogenous space

$$P^-(S^{2,2}) = SO^+(2, 3)/H$$

where the isotropy subgroup H of an element $(e_5 := (0,0,0,0,1), J_0) \in P^-(S^{2,2})$, is given by

$$H = \{ A \in SO^+(2, 2) \mid AJ_0 = J_0A \}, \quad J_0 := \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}.$$

Now, we are going to define a family of metrics on $P^-(S^{2,2})$. We can decompose algebra $so(2, 3)$ into the direct sum

$$so(2, 3) = m \oplus n \oplus h,$$

where m is identified with the tangent space on the neutral sphere in the point $[e_5]$ and n represents the tangent space on the fiber in that point. Denote by B Killing form on the Lie group $SO(2, 3)$

$$B(X, Y) := -\frac{1}{2}tr(XY), \quad X, Y \in so(2, 3).$$

We define a scalar product $g_\lambda, \lambda \in \mathbb{R}$ on $m \oplus n$ by

$$g_\lambda(X, Y) := B(X, Y)|_m, \quad X, Y \in m,$$

$$g_\lambda(X, Y) := \lambda B(X, Y)|_n, \quad X, Y \in n.$$

It defines $SO^+(2, 3)$ invariant scalar product g_λ on $P^-(S^{2,2})$.

12
The complex structure $J : m \oplus n \rightarrow m \oplus n$ is given on m by the matrix J_0 in the basis X_1, X_2, X_3, X_4, and up to sign canonically by $J(X_5) = X_6$ on n. It is integrable and becomes an invariant complex structure on $P^-(S^{2,2})$. If we now calculate the curvature tensor, we will see that the metric g_λ is Einstein for $\lambda = 1$ or $\lambda = 2$. The manifold $(P^-(S^{2,2}), g_\lambda, J)$ is a Kähler-Einstein only for $\lambda = 2$. One can check that an almost complex structure J' defined by $J'(X_5) = -X_6$ on n and as J on m, is not integrable.

The similar is true in a general situation. In the Riemannian case it was proved in [Fri82] and [Fri85]. Since the calculation is very similar in the neutral case, only a statement will be formulated without a proof.

We will define a family $g_\lambda, \lambda \neq 0$ of metrics on P^- first on the vertical, then on the horizontal tangent subspace according to the decomposition (7). A fiber of the twistor bundle carries the natural definite metric

$$g_\lambda(\sigma(X), \sigma(Y)) := \lambda < X, Y >, \ X, Y \in n$$

where $< \cdot, \cdot >$ is Fubini-Stud metric given by 2. For horizontal vector fields X, Y on P^- we define

$$g_\lambda(X, Y) := \pi^*g(X, Y), \ X, Y \in T_hP^-,$$

where g is the metric on $X^{2,2}$. One can show that the following theorem is true

Theorem 6.1 $(P^-(X^{2,2}), J, g_\lambda)$, $\lambda \neq 0$ is an Einstein manifold if and only if $\lambda \tau = 48$ or $\lambda \tau = 30$, where τ is nonzero scalar curvature of $X^{2,2}$. It is a Kähler manifold if and only if $\lambda \tau = 48$.

An important examples of self-dual manifolds of the neutral signature are Osserman manifolds. In [ABBR] it was shown that (X, g) is Osserman if and only if (X, g) is (anti-)self-dual and Einstein.

References

[Sal] Salamon S., An indefinite twistor space, Lecture notes, 5 pages
