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In the book Mihailo Petrovi�c - man, philosopher, mathematician D.

Mitrinovi�c says:

½Suvi�se se insistira ali ne potkrepljuje dokazima da je Petrovi�c posebno

orginalan u fenomenologiji i numeri�ckim spektrima.�

½Medutim potvrduje se sve vi�se da su njegovi rezultati iz teorije

polinoma, diferencijalnih jedna�cina polazna ta�cka za razne

generalizacije. Ostaje da se ispitaju dubina i uticaj Petrovi�cevih

rezultata u svetskoj matematici.�
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For example, in Mika's scripta Theory of (function) derivatives with

applications we can �nd heuristic proof of Rolle's theorem. Outline of

Mika's approach to the proof of Rolle's theorem:

Suppose that f has extreme value at a. Mika's approach is based on

i1) if f ′(a) > 0, then f is increasing;

i2) if f ′(a) < 0, then f is decreasing.

Mika uses the formula f ′(a) =
f(a+ h)− f(a)

h
. This is true only for

functions of the form f(x) = f(a) + f ′(a)(x− a).
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Further, if f ′(a) > 0 by de�nition of the limit

f(a+ h)− f(a)

h
> 0

for h small enough (there is h0 > 0, |h| ≤ h0 ) and therefore

f(a+ h)− f(a) > 0,

for 0 < h < h0 and

f(a+ h)− f(a) < 0,

for −h0 < h < 0.

To get a rigorous proof we can use that f ′(a) is limit of
f(a+ h)− f(a)

h
when h tends 0.
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Statement 1

Between two zero a function f there is odd number of zeros of function

f ′.

This is true only under additional hypothesis.

Suppose (I) that a < b, f(a) = f(b) and that f(x) > 0 for x ∈ [a, b].

If we divide an interval [a, b] by n points a < x1 < x2 < . . . < xn < b we
have n+ 1 interval ax1, x1x2, . . . , xnb.

In particular, we conclude

(A) if number of intervals is even, the number of points is odd.
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(A1) Suppose that f > 0 on (a, b), f(a) = f(b) = 0 and that there is

a = x0 < x1 < . . . < xn < b such that f is increasing (decreasing) on

Ik = [xk, xk+1] for k even (odd).

(A2) Hence f has local maximum (minimum) at xk for k odd (even).

Interpret (A1) by sequence XYXY · · ·XY .

Under assumption (A1) between two consecutive (successive) local

maximum there is a local minimum. Hence the total number of both is

odd. The number of intervals is even and by (A) the number of points

is odd.
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But this argument does not count the zero of f ′ if f(x) = x3 + 1 or

f(x) = sgnx · x2 + 1 at 0.

M. Mateljevi�c 8 / 26



Statement 2

Suppose that f is continuous on [a, b] and has derivative on (a, b). If

f > 0 on (a, b) and f ′ has �nite number of zeros (say m−zeros) on

(a, b) and at every zeros of f ′, f has a local extreme, then m is odd.

Roughly speaking, between two consecutive (successive) zeros of a

function f there is odd number of zeros of function f ′.
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Mika gives application to geometric problems.

Example 1

In isosceles (in particular equilateral) triangle ∆ describe rectangle R of

maximal area.

Let AB = 2a be a base and h al-

titude of ∆ and 2x (on AB) and y
sides of R. Then

(a− x) : y = a : h

and therefore

P (x) =
2h

a
x(a− x).

Hence we �nd x = a/2, y = h/2.
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Example 2

In a regular cone describe the cylinder of maximal volume.

Let h be height of the cone and

let r be radius of the cone's base.

Denote by x and y radius and he-

ight of cylinder respectively. Then

tgϕ =
h

r
and hence

V (x) = πx2y = π
h

r
x2(r − x).

From V ′(x) = 0, we �nd x =
2r

3
.
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Example 21
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Example 31
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Nejednakost Petrovi�ca, Karamate, Smirnova i

Kolmogorova

Neka je Lα = {reit : r > 0, |t| ≤ α}
i zk = rke

iθk ∈ Lα, k = 1, ..., n. U

ovom paragrafu pretpostavljamo da

je α ∈ (0, π/2).

Dakle, (A1): z ∈ Lα
akko θ = arg(z) ∈ [−α, α]
akko cos(θ) ≥ cos(α)
akko Rez ≥ cos(α)|z|.
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Proposition 1 (Petrovi�c)

Ako je α ∈ (0, π/2), onda je

n∑
k=1

|zk| ≤
1

cosα

n∑
k=1

Rezk.
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Proposition 2 (Karamata)

Ako α ∈ (0, π/2) i ako je f : [a, b]→ Lα neprekidna funkcija (op�stije

integrabilna funkcija ), onda je∫ b

a
|f(t)|dt ≤ 1

cosα
Re

∫ b

a
f(t)dt.

Na osnovu (A1): Ref(t) ≥ (cosα))|f(t)|, t ∈ [a, b] i otuda rezultat sledi.
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Prema Mitrinovi�cu (D.S. Mitrinovi�c, O jednoj nejednakosti, Mat.

Biblioteka 38(1968), 93-96), propozicija 1 prvi put se pojavila u

Petrovi�cevom �clanku u slu�caju α = π/4, 1917. godine. Petrovi�c je
dokazao op�sti slu�caj tek 1933. godine. Propozicija 2 je navedena u

knjizi Jovana Karamate Kompleksan broj sa primenom na elementarnu

geometriju iz 1950. godine na strani 157.
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Jedna verzija Propozicije 2 koja se pripisuje Smirnovu i Kolmogorovu

koristi se za dokaz slede�ceg stava (videti I. I. Privalov, Boundary

Properties of Analytic Functions,1950, str. 93):

Proposition 3 (Smirnov & Kolmogorov)

Ako je f : B→ Lα holomorfna, tada f ∈ Hp, gde je α0 = pα < π/2.

Skica dokaza. Neka je F grana funkcije fp. Kako F : B→ Lθ0 sledi∫ 2π

0
|F (t)|dt ≤ 1

cos(α0)
ReF (0).

M. Mateljevi�c 24 / 26



Finsler type function F on S(a, b), −∞ < a < b ≤ ∞, is de�ned for all

tangent vectors v ∈ Tw by F (v) = F (w,v) = HypS(a,b)(w)|(v, e1(w))|.
In particular,

F (v) =
|(v, e1(w))|
Rew − a

on S(a,∞).

Using Finsler type function F on S(a, b), (I1) can be stated as

(I2) F (h∗) ≤ |h|hyp, where h∗ = dfz(h). If γ is a curve in S and suppose

(i): there is α ∈ [0, π/2) such that arg γ′(t) ≤ α,
then cosα |γ|F ≤ |γ|hyp.
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Proposition 4 (BG seminar 2017)

Suppose that D is a hyperbolic plane domain and G = S(a, b),
−∞ < a < b ≤ ∞, and f : D → G is a complex harmonic on the

domain D. If z1, z2 ∈ D and γ is geodesic arc join z1 and z2 and

Γ := f(γ) satis�es (i): Γ′ ∈ Lα , then

cosαdhyp,G(fz1, fz2) ≤ dhyp,D(z1, z2).
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Pythagorean Theorem, Euclidean and non-Euclidean

geometry and Time Dilation
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Einstein's First Proof of Pythagorean Theorem

The Pythagorean theorem is true for rectangles of any
proportion-skinny, blocky, or anything in between. The squares on the
two sides always add up to the square on the diagonal. (More precisely,
the areas of the squares, not the squares themselves, add up. But this
simpler phrasing is less of a mouthful, so I'll continue to speak of
squares adding up when I really mean their areas.) The same rule
applies to right triangles, the shape you get when you slice a rectangle
in half along its diagonal.

M. Mateljevi�c 2 / 32



The rule now sounds more like the one you learned in school

a2 + b2 = c2.

In pictorial terms, the squares on the sides of a right triangle add up to
the square on its hypotenuse.
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But why is the theorem true? What's the logic behind it? Actually,
hundreds of proofs are known today. There's a marvelously simple one
attributed to the Pythagoreans and, independently, to the ancient
Chinese. There's an intricate one given in Euclid's Elements, which
schoolchildren have struggled with for the past twenty-three hundred
years, and which induced in the philosopher Arthur Schopenhauer �the
same uncomfortable feeling that we experience after a juggling trick.�
There's even a proof by President James A. Gar�eld, which involves the
cunning use of a trapezoid.

M. Mateljevi�c 4 / 32



It helps to run through the proof quickly at �rst, to get a feel for its
over-all structure.

Step 1. Draw a perpendicular line from the hypotenuse to the right
angle. This partitions the original right triangle into two smaller right
triangles.

M. Mateljevi�c 5 / 32
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Step 2. Note that the area of the little triangle plus the area of the
medium triangle equals the area of the big triangle.
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Step 3. The big, medium, and little triangles are similar in the
technical sense: their corresponding angles are equal and their
corresponding sides are in proportion. Their similarity becomes clear if
you imagine picking them up, rotating them, and arranging them like
so, with their hypotenuses on the top and their right angles on the
lower left:

M. Mateljevi�c 7 / 32



Step 4. Because the triangles are similar, each occupies the same
fraction f of the area of the square on its hypotenuse. Restated
symbolically, this observation says that the triangles have areas
fa2, fb2, and fc2, as indicated in the diagram.

(Don't worry if this step provokes a bit of head-scratching. I'll have
more to say about it below, after which I hope it'll seem obvious.)

M. Mateljevi�c 8 / 32



Step 5. Remember, from Step 2, that the little and medium triangles
add up to the original big one. Hence, from Step 4,

fa2 + fb2 = fc2.

Step 6. Divide both sides of the equation above by f. You will obtain

a2 + b2 = c2,

which says that the areas of the squares add up. That's the
Pythagorean theorem.

M. Mateljevi�c 9 / 32



The proof relies on two insights. The �rst is that a right triangle can be
decomposed into two smaller copies of itself (Steps 1 and 3). That's a
peculiarity of right triangles. If you try instead, for example, to
decompose an equilateral triangle into two smaller equilateral triangles,
you'll �nd that you can't. So Einstein's proof reveals why the
Pythagorean theorem applies only to right triangles: they're the only
kind made up of smaller copies of themselves. The second insight is
about additivity. Why do the squares add up (Step 6)? It's because the
triangles add up (Step 2), and the squares are proportional to the
triangles (Step 4).

M. Mateljevi�c 10 / 32



The logical link between the squares and triangles comes via the
confusing Step 4. Here's a way to make peace with it. Try it out for the
easiest kind of right triangle, an isosceles right triangle, also known as a
45-45-90 triangle, which is formed by cutting a square in half along its
diagonal.

M. Mateljevi�c 11 / 32



Many years after his Pythagorean proof, Einstein shared this lesson
with another twelve-year-old who was wrestling with mathematics. On
January 3, 1943, a junior-high-school student named Barbara Lee
Wilson wrote to him for advice. �Most of the girls in my room have
heroes which they write fan mail to,� she began. �You + my uncle who
is in the Coast Guard are my heroes.� Wilson told Einstein that she
was anxious about her performance in math class: �I have to work
longer in it than most of my friends. I worry (perhaps too much).�
Four days later, Einstein sent her a reply. �Until now I never dreamed
to be something like a hero,� he wrote. �But since you have given me
the nomination I feel that I am one.� As for Wilson's academic
concerns? �Do not worry about your di�culties in mathematics,� he
told her. �I can assure you that mine are still greater.�

M. Mateljevi�c 12 / 32



For a right triangle in hyperbolic geometry with sides a, b, c and with
side c opposite a right angle, the relation between the sides takes the
form:

cosh c = cosh a cosh b

where cosh is the hyperbolic cosine.
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Last formula is a special form of the hyperbolic law of cosines that
applies to all hyperbolic triangles:

cosh c = cosh a cosh b− sinh a sinh b cos γ

with γ the angle at the vertex opposite the side c.

M. Mateljevi�c 15 / 32



By using the Maclaurin series for the hyperbolic cosine,

coshx = 1 + x2/2 + o(x2), when x→ 0,

it can be shown that as a hyperbolic triangle becomes very small (that
is, as a, b, and c all approach zero), the hyperbolic relation for a right
triangle approaches the form of Pythagoras' theorem.
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In hyperbolic geometry when the curvature is −1, the law of sines
becomes:

sinα

sinh a
=

sinβ

sinh b
=

sin γ

sinh c
.

In the special case when γ is a right angle, one gets

sinα =
sinh a

sinh c
,

which is the analog of the formula in Euclidean geometry expressing the
sine of an angle as the opposite side divided by the hypotenuse.
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Proofs of Pythagorean Theorem

Professor R. Smullyan in his book 5000 B.C. and Other Philosophical
Fantasies tells of an experiment he ran in one of his geometry classes.
He drew a right triangle on the board with squares on the hypotenuse
and legs and observed the fact the the square on the hypotenuse had a
larger area than either of the other two squares. Then he asked,
�Suppose these three squares were made of beaten gold, and you were
o�ered either the one large square or the two small squares. Which
would you choose?� Interestingly enough, about half the class opted for
the one large square and half for the two small squares. Both groups
were equally amazed when told that it would make no di�erence.
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The Pythagorean (or Pythagoras') Theorem is the statement that the
sum of (the areas of) the two small squares equals (the area of) the big
one.

In algebraic terms, a2 + b2 = c2 where c is the hypotenuse while a and b
are the legs of the triangle.

The theorem is of fundamental importance in Euclidean Geometry
where it serves as a basis for the de�nition of distance between two
points. It's so basic and well known that, I believe, anyone who took
geometry classes in high school couldn't fail to remember it long after
other math notions got thoroughly forgotten.
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Proof 4

The fourth approach starts with the same four
triangles, except that, this time, they combine
to form a square with the side (a + b) and a
hole with the side c. We can compute the area
of the big square in two ways. Thus

(a+ b)2 = 4ab/2 + c2

simplifying which we get the needed identity.

A proof which combines this with proof 3 is credited to the 12th
century Hindu mathematician Bhaskara (Bhaskara II).
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Proof 5

This proof, discovered by President J. A.
Gar�eld in 1876 [Pappas], is a variation on the
previous one. But this time we draw no squares
at all. The key now is the formula for the area
of a trapezoid - half sum of the bases times the

altitude -
(a+ b)

2
· (a+ b). Looking at the pic-

ture another way, this also can be computed
as the sum of areas of the three triangles -
a · b

2
+
a · b

2
+
c · c
2

. As before, simpli�cations

yield a2+b2 = c2. (There is more to that story.)

Two copies of the same trapezoid can be combined in two ways by
attaching them along the slanted side of the trapezoid. One leads to
the proof 4, the other to proof 52.
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Proof 9

Another proof stems from a rearrangement of
rigid pieces, much like proof 2. It makes the
algebraic part of proof 4 completely redundant.
There is nothing much one can add to the two
pictures. (My sincere thanks go to Monty Phis-
ter for the kind permission to use the graphics.)
There is an interactive simulation to toy with.
And another one that clearly shows its relation
to proofs 24 or 69.
Loomis (pp. 49-50) mentions that the proof �was devised by Maurice
Laisnez, a high school boy, in the Junior-Senior High School of South
Bend, Ind., and sent to me, May 16, 1939, by his class teacher, Wilson
Thornton.�
The proof has been published by Rufus Isaac in Mathematics
Magazine, Vol. 48 (1975), p. 198.

M. Mateljevi�c 22 / 32



Time dilation

Simple inference of time dilation due to relative velocity

Left: Observer at rest measures time 2L/c between co-local events of
light signal generation at A and arrival at A.
Right: Events according to an observer moving to the left of the setup:
bottom mirror A when signal is generated at time t′ = 0, top mirror B
when signal gets re�ected at time t′ = D/c, bottom mirror A when
signal returns at time t′ = 2D/c.
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Time dilation can be inferred from the observed constancy of the speed
of light in all reference frames.
This constancy of the speed of light means, counter to intuition, that
speeds of material objects and light are not additive. It is not possible
to make the speed of light appear greater by approaching at speed
towards the material source that is emitting light. It is not possible to
make the speed of light appear less by receding from the source at
speed. From one point of view, it is the implications of this unexpected
constancy that take away from constancies expected elsewhere.
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Consider a simple clock consisting of two mirrors A and B, between
which a light pulse is bouncing. The separation of the mirrors
is L and the clock ticks once each time the light pulse hits a given mirror.

In the frame where the clock is at rest (diagram on the left), the light
pulse traces out a path of length 2L and the period of the clock is 2L

divided by the speed of light ∆t =
2L

c
.
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From the frame of reference of a moving observer traveling at the speed
v relative to the rest frame of the clock (diagram at right), the light
pulse traces out a longer, angled path. The second postulate of special
relativity states that the speed of light in free space is constant for all
inertial observers, which implies a lengthening of the period of this
clock from the moving observer's perspective.
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That is to say, in a frame moving relative to the clock, the clock
appears to be running more slowly. Straightforward application of the
Pythagorean theorem leads to the well-known prediction of special
relativity:

The total time for the light pulse to trace its path is given by ∆t′ =
2D

c
.
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If t = t′ = 0, we have x = vt′, 2L = ct and 2D = ct′. Next
x/(2D) = vt′/(ct′) = v/c := ω. Hence

t

t′
=
L

D
= sinα =

√
1− ω2 := γ−1.
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We also can prove it using only Pythagora's theorem.
The length of the half path can be calculated as a function of known

quantities as D =

√(
1

2
v∆t′

)2

+ L2.
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Substituting D from this equation into the previous and solving for ∆t′

gives:

∆t′ =
1

c

√
(v∆t′)2 + (2L)2

(
∆t′
)2

=
v2

c2
(∆t′)2 +

(
2L

c

)2

(
1− v2

c2

)(
∆t′
)2

=

(
2L

c

)2

(
∆t′
)2

=
(2L/c)2

1− v2/c2

∆t′ =
2L/c√

1− v2/c2
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and thus, with the de�nition of ∆t:

∆t′ =
∆t√

1− v2

c2

which expresses the fact that for the moving observer the period of the
clock is longer than in the frame of the clock itself.
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Thank you for attention!
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Thank you for attention!
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