# Compact and "compact" operators on the standard Hilbert module over a $W^{*}$-algebra 

Who? Dragoljub J. Kečkić and Zlatko Lazović<br>From? Faculty of Mathematics, University of Belgrade<br>When? November 4th 2016

## Algebras

C*-algebra A Banach algebra with an involution such that $\left\|a^{*} a\right\|=\|a\|^{2}$.
Any $C^{*}$ algebra has a representation as a subalgebra of $B(H)$ for some Hilbert space $H$ - Gelfand-Naimark theorem.

## Algebras

C*-algebra
A Banach algebra with an involution such that $\left\|a^{*} a\right\|=\|a\|^{2}$.
Any $C^{*}$ algebra has a representation as a subalgebra of $B(H)$ for some Hilbert space $H$ - Gelfand-Naimark theorem.
$W^{*}$-algebra $\mathrm{A} C^{*}$-algebra that has a predual.
Such a predual is unique. Its elements are called normal. $W^{*}$-algebra has a strongly (or weakly, or ultraweakly, etc.) closed representation.

## Algebras

C*-algebra
A Banach algebra with an involution such that $\left\|a^{*} a\right\|=\|a\|^{2}$.

Any $C^{*}$ algebra has a representation as a subalgebra of $B(H)$ for some Hilbert space $H$ - Gelfand-Naimark theorem.
$W^{*}$-algebra
A $C^{*}$-algebra that has a predual.
Such a predual is unique. Its elements are called normal. $W^{*}$-algebra has a strongly (or weakly, or ultraweakly, etc.) closed representation.

Examples

- $C(K)$ is a $C^{*}$-algebra, but not $W^{*}$.
- $B(H)$ is a $W^{*}$-algebra. $B(H)_{*} \cong \mathfrak{S}_{1}$. $L^{\infty}(X ; \mu)$ is a $W^{*}$-algebra. $L^{\infty}(X ; \mu)_{*} \cong L^{1}(X ; \mu)$.


## Hilbert C* modules

Hilbert A right module $M$ over $A$ with an $A$-valued inner $C^{*}$-module product such that
$1 \quad\langle a, a\rangle \geq 0,\langle a, a\rangle=0 \Leftrightarrow a=0 ;$
$\langle b, a\rangle=\langle a, b\rangle^{*} ;$
$\left\langle a, b_{1} \lambda_{1}+b_{2} \lambda_{2}\right\rangle=\left\langle a, b_{1}\right\rangle \lambda_{1}+\left\langle a, b_{2}\right\rangle \lambda_{2}$.
Here, $a, b, b_{j} \in M, \lambda_{j} \in A$.
A Hilbert $C^{*}$-module need not to have a basis (as any module).

## Hilbert $C^{*}$ modules

Hilbert C*-module

Standard
Hilbert module

A right module $M$ over $A$ with an $A$-valued inner product such that
$\langle a, a\rangle \geq 0,\langle a, a\rangle=0 \Leftrightarrow a=0 ;$ $\langle b, a\rangle=\langle a, b\rangle^{*} ;$
$\left\langle a, b_{1} \lambda_{1}+b_{2} \lambda_{2}\right\rangle=\left\langle a, b_{1}\right\rangle \lambda_{1}+\left\langle a, b_{2}\right\rangle \lambda_{2}$.
Here, $a, b, b_{j} \in M, \lambda_{j} \in A$.
A Hilbert $C^{*}$-module need not to have a basis (as any module).

$$
I^{2}(A)=\left\{x=\left(\xi_{1}, \xi_{2}, \ldots\right) \mid \xi_{j} \in A, \sum_{j=1}^{+\infty} \xi_{j}^{*} \xi_{j}\right.
$$ conv. in $\|\cdot\|\}$.

Standard Hilbert module over a unital algebra has a (Riesz) basis $e_{j}=(0,0, \ldots, 1,0, \ldots), 1$ is the unit of $A$ placed on $j$-th entry.

## "Compact" operators

"Compact"
Closed linear span of the operators $\Theta_{y, z}: M \rightarrow M$, operators on a $\Theta_{y, z}(x)=z\langle y, x\rangle$.

Such operators need not to map bounded sets into relatively compact. Hence the quotation marks.

## "Compact" operators

"Compact" operators on a module $M$

Problem

Closed linear span of the operators $\Theta_{y, z}: M \rightarrow M$, $\Theta_{y, z}(x)=z\langle y, x\rangle$.
Such operators need not to map bounded sets into relatively compact. Hence the quotation marks.

Find a topology on $I^{2}(A)$ such that "compact" operators map bounded into totally bounded sets.

If possible, prove the converse, if $A$ maps bounded into totally bounded sets then $A$ is "compact".

## "Compact" operators

"Compact" operators on a module $M$

Problem
Find a topology on $I^{2}(A)$ such that "compact" operators map bounded into totally bounded sets.

If possible, prove the converse, if $A$ maps bounded into totally bounded sets then $A$ is "compact".

Result The first problem is solved. The second partially.

## Locally convex spaces

A locally Determined by a family of seminorms $p_{i}, i \in I$. convex space Seminorms gives rise to the family of semimetrics $d_{i}(x, y)=p_{i}(x-y)$.
A locally convex space is a uniform space.

## Locally convex spaces

A locally convex space

Determined by a family of seminorms $p_{i}, i \in I$. Seminorms gives rise to the family of semimetrics $d_{i}(x, y)=p_{i}(x-y)$.
A locally convex space is a uniform space.
A set is totally bounded if it is totally bounded in all $d_{i}$. A net is a Cauchy net if it is Cauchy net in all $d_{i}$.
A space is complete if all Cauchy nets converge.
Relatively compact $\Rightarrow$ totally bounded.
The converse is true provided the space is complete.

## Locally convex spaces

A locally convex space

Determined by a family of seminorms $p_{i}, i \in I$. Seminorms gives rise to the family of semimetrics $d_{i}(x, y)=p_{i}(x-y)$.
A locally convex space is a uniform space.
A set is totally bounded if it is totally bounded in all $d_{i}$. A net is a Cauchy net if it is Cauchy net in all $d_{i}$. A space is complete if all Cauchy nets converge. Relatively compact $\Rightarrow$ totally bounded.
The converse is true provided the space is complete.

In further
$M$ is a Hilbert module over a $W^{*}$-algebra. From now to the end.

## Paschke-Frank topologies

## PF topologies Weak and strong topology:

- weak $\tau_{1}$ generated by functionals of the form $M \ni x \mapsto \varphi(\langle y, x\rangle), y \in M, \varphi$ a normal state. Seminorms $|\varphi(\langle y, x\rangle)|$.
- strong $\tau_{2}$ generated by seminorms $\varphi(\langle x, x\rangle)^{1 / 2}, \varphi$ a normal state.
Always $\tau_{1} \subset \tau_{2}$.


## Paschke-Frank topologies

## PF topologies Weak and strong topology:

- weak $\tau_{1}$ generated by functionals of the form $M \ni x \mapsto \varphi(\langle y, x\rangle), y \in M, \varphi$ a normal state. Seminorms $|\varphi(\langle y, x\rangle)|$.
- strong $\tau_{2}$ generated by seminorms $\varphi(\langle x, x\rangle)^{1 / 2}, \varphi$ a normal state.

Always $\tau_{1} \subset \tau_{2}$.
Normal states Positive functionals $\varphi \in A_{*},\|\varphi\|=1$. Then $\varphi(1)=1$.

## Paschke-Frank topologies

## PF topologies Weak and strong topology:

- weak $\tau_{1}$ generated by functionals of the form $M \ni x \mapsto \varphi(\langle y, x\rangle), y \in M, \varphi$ a normal state. Seminorms $|\varphi(\langle y, x\rangle)|$.
- strong $\tau_{2}$ generated by seminorms $\varphi(\langle x, x\rangle)^{1 / 2}, \varphi$ a normal state.

Always $\tau_{1} \subset \tau_{2}$.
Normal states
Positive functionals $\varphi \in A_{*},\|\varphi\|=1$. Then $\varphi(1)=1$.

To continue, we need a definition of a dual module.

## Paschke-Frank topologies

PF topologies Weak and strong topology:

- weak $\tau_{1}$ generated by functionals of the form $M \ni x \mapsto \varphi(\langle y, x\rangle), y \in M, \varphi$ a normal state. Seminorms $|\varphi(\langle y, x\rangle)|$.
- strong $\tau_{2}$ generated by seminorms $\varphi(\langle x, x\rangle)^{1 / 2}, \varphi$ a normal state.

Always $\tau_{1} \subset \tau_{2}$.
Normal states Positive functionals $\varphi \in A_{*},\|\varphi\|=1$. Then $\varphi(1)=1$.

To continue, we need a definition of a dual module.
Selfdual module A module $M$ over $A$ such that all $A$-linear maps from $M$ to $A$ are of the form $x \mapsto\langle y, x\rangle$ for some $y \in M$.

Otherwise, the space of $A$ linear maps forms another module $M^{\prime}$ - the dual module. $M^{\prime}$ is always selfdual.

## Properties of PF topologies

## Weak PF If $M$ is selfdual, then $M$ is a dual Banach space. topology $\quad \tau_{1}$ - exactly weak-* topology. <br> (Paschke TAMS 1973).

## Properties of PF topologies

Weak PF If $M$ is selfdual, then $M$ is a dual Banach space.
topology $\quad \tau_{1}$ - exactly weak-* topology.
(Paschke TAMS 1973).
Completeness The following is equivalent:
$M$ is selfdual;
The unit ball in $M$ is complete in $\tau_{1}$;
The unit ball in $M$ is complete in $\tau_{2}$.
(Frank ZAA 1990)

## Properties of PF topologies

Weak PF topology

If $M$ is selfdual, then $M$ is a dual Banach space.
$\tau_{1}$ - exactly weak-* topology.
(Paschke TAMS 1973).
Completeness The following is equivalent:
$M$ is selfdual;
The unit ball in $M$ is complete in $\tau_{1}$;
The unit ball in $M$ is complete in $\tau_{2}$.
(Frank ZAA 1990)
PF are not suitable
$\tau_{1}$ is too weak - the unit ball in $I^{2}(A)$ is compact.
$\tau_{2}$ is too strong - the unit ball in $A^{n}$ is not compact.

## Here is the right topology $-\tau$ !

$M=I^{2}(A)$ - the standard Hilbert module. Topology $\tau$ generated by seminorms

$$
p_{\varphi, y}(x)=\sqrt{\sum_{j=1}^{+\infty}\left|\varphi\left(\eta_{j}^{*} \xi_{j}\right)\right|^{2}}
$$

where $\varphi$ is a normal state and $y=\left(\eta_{1}, \eta_{2}, \ldots\right)$ satisfies

$$
\begin{equation*}
\sup _{j} \varphi\left(\eta_{j}^{*} \eta_{j}\right)<+\infty \tag{1}
\end{equation*}
$$

Note that $y$ need not to $\in I^{2}(A)$. However, for any $y=\left(\eta_{1}, \eta_{2}, \ldots\right)$, the sequence $\eta_{j} / \varphi\left(\eta_{j}^{*} \eta_{j}\right)^{1 / 2}$ fulfills (1).

## Properties of $\tau$

## Properties

1
2
$\tau_{1} \subset \tau \subset \tau_{2} ;$
The unit ball in $I^{2}(A)$ is not complete in all $\tau_{1}, \tau, \tau_{2}$ ( $I^{2}(A)$ is not selfdual);
3 Restricted to $A^{n}$ (forget all after $n$-th entry) $\tau_{1}=\tau$;
4 The unit ball in $A^{n}$ is compact in $\tau$, hence totally bounded ( $A^{n}$ is selfdual);
5 The unit ball in $I^{2}(A)$ is not totally bounded in $\tau$.

## Property 1

$1 \quad \tau_{1} \subset \tau \subset \tau_{2}$.

## Property 1

$$
\mathbf{1} \quad \tau_{1} \subset \tau \subset \tau_{2}
$$

## Proof

$\tau_{1} \subset \tau \quad y=\left(\eta_{1}, \eta_{2}, \ldots\right) \in I^{2}(\mathcal{A}) \Rightarrow \zeta_{j}=\eta_{j} / \varphi\left(\eta_{j}^{*} \eta_{j}\right)^{1 / 2}$ fulfils (1). Hence

$$
\begin{aligned}
|\varphi(\langle y, x\rangle)| & =\left|\varphi\left(\sum_{j=1}^{+\infty} \eta_{j}^{*} \xi_{j}\right)\right|=\left|\sum_{j=1}^{+\infty} \varphi\left(\eta_{j}^{*} \eta_{j}\right)^{\frac{1}{2}} \varphi\left(\zeta_{j}^{*} \xi_{j}\right)\right| \leq \\
& \leq\left(\sum_{j=1}^{+\infty} \varphi\left(\eta_{j}^{*} \eta_{j}\right)\right)^{\frac{1}{2}}\left(\sum_{j=1}^{+\infty}\left|\varphi\left(\zeta_{j}^{*} \xi_{j}\right)\right|^{2}\right)^{\frac{1}{2}}= \\
& =\varphi(\langle y, y\rangle)^{\frac{1}{2}} p_{\varphi, z}(x)
\end{aligned}
$$

## Property 1 - continuation

$\tau \subset \tau_{2} \quad(\xi, \eta) \mapsto \varphi\left(\xi^{*} \eta\right)$ - a semi inner product. Hence $\left|\varphi\left(\xi^{*} \eta\right)\right| \leq \varphi\left(\xi^{*} \xi\right)^{\frac{1}{2}} \varphi\left(\eta^{*} \eta\right)^{\frac{1}{2}}$.

$$
\begin{aligned}
p_{\varphi, y}(x)^{2} & =\sum_{j=1}^{+\infty}\left|\varphi\left(\eta_{j}^{*} \xi_{j}\right)\right|^{2} \leq \sum_{j=1}^{+\infty} \varphi\left(\xi_{j}^{*} \xi_{j}\right) \varphi\left(\eta_{j}^{*} \eta_{j}\right) \leq \\
& \leq \sum_{j=1}^{+\infty} \varphi\left(\xi_{j}^{*} \xi_{j}\right)=\varphi(\langle x, x\rangle)
\end{aligned}
$$

## Property 1 - continuation

$\tau \subset \tau_{2}$
$(\xi, \eta) \mapsto \varphi\left(\xi^{*} \eta\right)$ - a semi inner product. Hence $\left|\varphi\left(\xi^{*} \eta\right)\right| \leq \varphi\left(\xi^{*} \xi\right)^{\frac{1}{2}} \varphi\left(\eta^{*} \eta\right)^{\frac{1}{2}}$.

$$
\begin{aligned}
p_{\varphi, y}(x)^{2} & =\sum_{j=1}^{+\infty}\left|\varphi\left(\eta_{j}^{*} \xi_{j}\right)\right|^{2} \leq \sum_{j=1}^{+\infty} \varphi\left(\xi_{j}^{*} \xi_{j}\right) \varphi\left(\eta_{j}^{*} \eta_{j}\right) \leq \\
& \leq \sum_{j=1}^{+\infty} \varphi\left(\xi_{j}^{*} \xi_{j}\right)=\varphi(\langle x, x\rangle)
\end{aligned}
$$

Remark These proofs works also for

$$
I^{2}(A)^{\prime}=\left\{x=\left(\xi_{n}\right)_{n \geq 1} \mid \sup _{n}\left\|\sum_{1}^{n} \xi_{j}^{*} \xi_{j}\right\|<+\infty\right\}
$$

## Property 2

2 The unit ball in $I^{2}(A)$ is not complete in all $\tau_{1}, \tau, \tau_{2}$ $\left(I^{2}(A)\right.$ is not selfdual).

## Property 2

The unit ball in $I^{2}(A)$ is not complete in all $\tau_{1}, \tau, \tau_{2}$ $\left(I^{2}(A)\right.$ is not selfdual).

## Proof

Unit ball in $I^{2}(A)^{\prime}$ is complete
$I^{2}(A)^{\prime} \ni x^{\alpha}$ Cauchy net $\Rightarrow \xi_{k}^{\alpha} C$. net in $A$. (Choose $\eta_{k}=1, \eta_{j}=0$ for $j \neq k$.) Hence $\xi_{k}^{\alpha} \xrightarrow{w *} \xi_{k}$, and $\sum_{j=1}^{k}\left|\varphi\left(\eta_{j}^{*} \xi_{j}^{\alpha}\right)\right|^{2} \rightarrow \sum_{j=1}^{k}\left|\varphi\left(\eta_{j}^{*} \xi_{j}\right)\right|^{2}$.
Let $\eta_{j}=\xi_{j} / \varphi\left(\xi_{j}^{*} \xi_{j}\right)^{\frac{1}{2}}$. We get

$$
\begin{aligned}
\sum_{j=1}^{k} \varphi\left(\xi_{j}^{*} \xi_{j}\right) & =\sum_{j=1}^{k}\left|\varphi\left(\eta_{j}^{*} \xi_{j}\right)\right|^{2}=\lim _{\alpha} \sum_{j=1}^{k}\left|\varphi\left(\eta_{j}^{*} \xi_{j}^{\alpha}\right)\right|^{2} \leq \\
& \leq\|x\| \leq 1
\end{aligned}
$$

Take $\lim _{k \rightarrow+\infty}$ to conclude $x=\left(\xi_{1}, \xi_{2}, \ldots\right) \in I^{2}(\mathcal{A})^{\prime}$.

## Property 2 - continuation

Finally

$$
\sum_{j=1}^{k}\left|\varphi\left(\eta_{j}^{*} \xi_{j}^{\alpha}\right)-\varphi\left(\eta_{j}^{*} \xi_{j}^{\beta}\right)\right|^{2} \leq \sum_{j=1}^{+\infty}\left|\varphi\left(\eta_{j}^{*} \xi_{j}^{\alpha}\right)-\varphi\left(\eta_{j}^{*} \xi_{j}^{\beta}\right)\right|^{2}<\varepsilon,
$$

take the limit over $\beta$ and limit as $k \rightarrow+\infty$.

## Property 2 - continuation

Finally

$$
\sum_{j=1}^{k}\left|\varphi\left(\eta_{j}^{*} \xi_{j}^{\alpha}\right)-\varphi\left(\eta_{j}^{*} \xi_{j}^{\beta}\right)\right|^{2} \leq \sum_{j=1}^{+\infty}\left|\varphi\left(\eta_{j}^{*} \xi_{j}^{\alpha}\right)-\varphi\left(\eta_{j}^{*} \xi_{j}^{\beta}\right)\right|^{2}<\varepsilon
$$

take the limit over $\beta$ and limit as $k \rightarrow+\infty$.

The ball in $I^{2}(A)$ is dense in the ball in $I^{2}(A)^{\prime}$
$\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}, 0,0, \ldots\right)=x_{n} \rightarrow x=\left(\xi_{1}, \ldots\right) \in I^{2}(A)^{\prime}$.
Indeed, by normality of $\varphi$ we have

$$
p_{\varphi, y}\left(x-x_{n}\right)^{2} \leq \varphi\left(\left\langle x-x_{n}, x-x_{n}\right\rangle\right)=\varphi\left(\sum_{j=n}^{+\infty} \xi_{j}^{*} \xi_{j}\right) \rightarrow 0
$$

$$
\text { as } n \rightarrow+\infty
$$

## Properties 3 \& 4

3 Restricted to $A^{n}$ (forget all after $n$-th entry) $\tau_{1}=\tau$.

## Properties 3 \& 4

3 Restricted to $A^{n}$ (forget all after $n$-th entry) $\tau_{1}=\tau$.

## $\tau \subset \tau_{1}$

$$
\begin{aligned}
p_{\varphi, y}(x) & =\left(\sum_{j=1}^{n}\left|\varphi\left(\eta_{j}^{*} \xi_{j}\right)\right|^{2}\right)^{\frac{1}{2}} \leq \\
& \leq \sum_{j=1}^{n}\left|\varphi\left(\eta_{j}^{*} \xi_{j}\right)\right|=\sum_{j=1}^{n}\left|\varphi\left(\left\langle z_{j}, x\right\rangle\right)\right|,
\end{aligned}
$$

where $z_{j}=\left(0, \ldots, 0, \eta_{j}, 0, \ldots, 0\right)$.

## Properties 3 \& 4

Restricted to $A^{n}$ (forget all after $n$-th entry) $\tau_{1}=\tau$.

## $\tau \subset \tau_{1}$

$$
\begin{aligned}
p_{\varphi, y}(x) & =\left(\sum_{j=1}^{n}\left|\varphi\left(\eta_{j}^{*} \xi_{j}\right)\right|^{2}\right)^{\frac{1}{2}} \leq \\
& \leq \sum_{j=1}^{n}\left|\varphi\left(\eta_{j}^{*} \xi_{j}\right)\right|=\sum_{j=1}^{n}\left|\varphi\left(\left\langle z_{j}, x\right\rangle\right)\right|
\end{aligned}
$$

where $z_{j}=\left(0, \ldots, 0, \eta_{j}, 0, \ldots, 0\right)$.
4 The unit ball in $A^{n}$ is compact in $\tau$, hence totally bounded ( $A^{n}$ is selfdual).

Follows easily from the previous.

## Property 5

5 The unit ball in $I^{2}(A)$ is not totally bounded in $\tau$.

## Property 5

5 The unit ball in $I^{2}(A)$ is not totally bounded in $\tau$.
There is a totally discrete sequence.
Choose $\eta_{j}=1$ for all $j$ and $\varphi$ arbitrary. Then $p_{\varphi, y}\left(e_{n}-e_{m}\right)=\sqrt{2}$.

## "Compact" $\Rightarrow$ compact

Proposition $\quad T$ is "compact" $\Rightarrow A$ is compact (i.e. maps bounded into totally bounded sets).

## "Compact" $\Rightarrow$ compact

Proposition
$T$ is "compact" $\Rightarrow A$ is compact (i.e. maps bounded into totally bounded sets).

Proof Observe the following three facts:
1 Projections $P_{n}: I^{2}(A) \rightarrow I^{2}(A)$,
$P_{n}\left(\xi_{1}, \ldots, \xi_{n}, \xi_{n+1}, \ldots\right)=\left(\xi_{1}, \ldots, \xi_{n}, 0, \ldots\right)$ make an approximate identity in the algebra of "compact" operators;

2 The property of being compact is $A$ linear;
3 The property of being compact is stable under limits, either uniform, or in $\tau$.

## "Compact" $\Rightarrow$ compact

Proposition $T$ is "compact" $\Rightarrow A$ is compact (i.e. maps bounded into totally bounded sets).

Proof Observe the following three facts:
1 Projections $P_{n}: I^{2}(A) \rightarrow I^{2}(A)$,
$P_{n}\left(\xi_{1}, \ldots, \xi_{n}, \xi_{n+1}, \ldots\right)=\left(\xi_{1}, \ldots, \xi_{n}, 0, \ldots\right)$ make an approximate identity in the algebra of "compact" operators;

2 The property of being compact is $A$ linear;
3 The property of being compact is stable under limits, either uniform, or in $\tau$.

The first of them is well known. The last two are easy to derive.

## "Compact" $\Rightarrow$ compact - continuation

Reduce to rank By 2 and 3, it suffices to consider
$1 x \mapsto \Theta_{y, z}(x)=z\langle y, x\rangle$.

## "Compact" $\Rightarrow$ compact - continuation

Reduce to rank By 2 and 3, it suffices to consider
$1 x \mapsto \Theta_{y, z}(x)=z\langle y, x\rangle$.
$\operatorname{ran} \Theta \subseteq A^{n} \quad$ If $z=e_{j} \zeta, \zeta \in \mathcal{A}$, we have compactness of the unit ball in $A^{n}$.

## "Compact" $\Rightarrow$ compact - continuation

Reduce to rank
$\operatorname{ran} \Theta \subseteq A^{n}$

Appr. by basis
(conv. in the norm). Since $\left\|\Theta_{y, z}-\Theta_{y, z^{\prime}}\right\| \leq\|y\|\left\|z-z^{\prime}\right\|$, we have

$$
\Theta_{y, z}=\lim _{n \rightarrow+\infty} \sum_{j=1}^{n} \Theta_{y, e_{j} \zeta_{j}}
$$

$x \mapsto \Theta_{y, z}(x)=z\langle y, x\rangle$.
If $z=e_{j} \zeta, \zeta \in \mathcal{A}$, we have compactness of the unit ball in $A^{n}$.

Otherwise, if $z=\left(\zeta_{1}, \zeta_{2}, \ldots\right)$. Then $z=\sum_{j=1}^{+\infty} e_{j} \zeta_{j}$

## Compact $\Rightarrow$ "compact" - a partial result

Proposition If $A=B(H)$ the converse is true: If $T$ is compact then $T$ is "compact".

## Compact $\Rightarrow$ "compact" - a partial result

Proposition

Proof (idea)

If $A=B(H)$ the converse is true: If $T$ is compact then $T$ is "compact".

The proof is carried out as follows: For $T$ not "compact" construct a totally discrete sequence in the image of the unit ball. The proof is highly technical (many indices, $\varepsilon$ 's etc.) - hence omitted. The following Lemma plays the key roll.

## Compact $\Rightarrow$ "compact" - a partial result

Proposition

Proof (idea)

If $A=B(H)$ the converse is true: If $T$ is compact then $T$ is "compact".

The proof is carried out as follows: For $T$ not "compact" construct a totally discrete sequence in the image of the unit ball. The proof is highly technical (many indices, $\varepsilon$ 's etc.) - hence omitted. The following Lemma plays the key roll.

The Lemma
Let $a_{n} \in B(H)$ be a sequence of positive operators, such that $\left\|a_{n}\right\|>\delta$. Then there is a normal state $\varphi$, and unitaries $v_{n}, \nu_{n}$ such that $\varphi\left(v_{n}^{*} a_{n} \nu_{n}\right)>\delta$.

## A counterexample

For $A$ Let $p_{j} \in A$ be mutually orthogonal nontrivial commutative projections. Then $T: I^{2}(A) \rightarrow I^{2}(A)$,

$$
T x=T\left(\xi_{1}, \xi_{2}, \ldots\right)=\left(p_{1} \xi_{1}, p_{2} \xi_{2}, \ldots\right)
$$

is compact, but not "compact"

## A counterexample

For $A$ Let $p_{j} \in A$ be mutually orthogonal nontrivial commutative projections. Then $T: I^{2}(A) \rightarrow I^{2}(A)$,

$$
T x=T\left(\xi_{1}, \xi_{2}, \ldots\right)=\left(p_{1} \xi_{1}, p_{2} \xi_{2}, \ldots\right)
$$

is compact, but not "compact"

## Proof (outline)

To see $T$ is not "compact" observe that $\left\|T-P_{n} T\right\|=1$ contradicting $P_{n}$ is an approximate identity.
To see $T$ is compact, note for any seminorm $p\left(T-P_{n} T\right) \rightarrow 0$. This preserves compactness.

## A counterexample

For $A$ Let $p_{j} \in A$ be mutually orthogonal nontrivial commutative projections. Then $T: I^{2}(A) \rightarrow I^{2}(A)$,

$$
T x=T\left(\xi_{1}, \xi_{2}, \ldots\right)=\left(p_{1} \xi_{1}, p_{2} \xi_{2}, \ldots\right)
$$

is compact, but not "compact"

## Proof (outline)

To see $T$ is not "compact" observe that $\left\|T-P_{n} T\right\|=1$ contradicting $P_{n}$ is an approximate identity.
To see $T$ is compact, note for any seminorm $p\left(T-P_{n} T\right) \rightarrow 0$. This preserves compactness.

Also the sequence $p_{n}$ contradicts the Lemma.

## Problems for further work

Problem 1 Describe $W^{*}$-algebras for which the Lemma is true. We suspect it is valid for factors.

## Problems for further work

Problem 1 Describe $W^{*}$-algebras for which the Lemma is true. We suspect it is valid for factors.

Problem 2 Extend the presented results to modules over $C^{*}$-algebras using their enveloping $W^{*}$-algebras. For $A$ $C^{*}$-algebra, its $W^{*}$-envelope is its second dual $A^{* *}$ which appears to be isomorphic to the bicommutant $\pi(A)^{\prime \prime}$, where $\pi$ is the universal representation.

## Problems for further work

Problem 1 Describe $W^{*}$-algebras for which the Lemma is true. We suspect it is valid for factors.

Problem 2 Extend the presented results to modules over $C^{*}$-algebras using their enveloping $W^{*}$-algebras. For $A$ $C^{*}$-algebra, its $W^{*}$-envelope is its second dual $A^{* *}$ which appears to be isomorphic to the bicommutant $\pi(A)^{\prime \prime}$, where $\pi$ is the universal representation.

Problem 3 Extend the presented results to any module over $A$ (not only for $I^{2}(A)$, i.e. make seminorms independent of coordinates. It might be difficult.

## Thanks for your attention

Complete proofs at https://arxiv.org/abs/1610.06956

## Thanks for your attention

Complete proofs at https://arxiv.org/abs/1610.06956

To make it easier to remember:
1610 Henri IV of France assassinated by Ravaillac 069 it is easy to remember. I guess?! 56 due to previous students often get 5 and 6

