

Compact and "compact" operators on the standard Hilbert module over a W^* -algebra

Who? Dragoljub J. Kečkić and Zlatko Lazović

From? Faculty of Mathematics, University of Belgrade

When? November 4th 2016

Algebras

C^* -algebra

A Banach algebra with an involution such that $||a^*a|| = ||a||^2$.

Any C^* algebra has a representation as a subalgebra of $\mathcal{B}(H)$ for some Hilbert space H – Gelfand-Naimark theorem.

Algebras

C*-algebra

 $||a^*a|| = ||a||^2$. Any C^* algebra has a representation as a subalgebra of B(H) for some Hilbert space H – Gelfand-Naimark theorem.

A Banach algebra with an involution such that

 W^* -algebra

A C^* -algebra that has a predual.

Such a predual is unique. Its elements are called normal. W^* -algebra has a strongly (or weakly, or ultraweakly, etc.) closed representation.

Algebras

C*-algebra

A Banach algebra with an involution such that $||a^*a|| = ||a||^2$. Any C^* algebra has a representation as a subalgebra of

B(H) for some Hilbert space H – Gelfand-Naimark

theorem.

 W^* -algebra A C^* -algebra that has a predual.

Such a predual is unique. Its elements are called normal. W^* -algebra has a strongly (or weakly, or ultraweakly, etc.) closed representation.

Examples

- lacksquare C(K) is a C^* -algebra, but not W^* .
- lacksquare B(H) is a W^* -algebra. $B(H)_*\cong\mathfrak{S}_1$.
- $L^{\infty}(X;\mu)$ is a W^* -algebra. $L^{\infty}(X;\mu)_*\cong L^1(X;\mu)$.

Hilbert C* modules

Hilbert C*-module

A right module *M* over *A* with an *A*-valued inner product such that

- 1 $\langle a,a\rangle \geq 0$, $\langle a,a\rangle = 0 \Leftrightarrow a=0$;
- $2 \quad \langle b, a \rangle = \langle a, b \rangle^*;$
 - 3 $\langle a, b_1 \lambda_1 + b_2 \lambda_2 \rangle = \langle a, b_1 \rangle \lambda_1 + \langle a, b_2 \rangle \lambda_2.$

Here, $a, b, b_j \in M$, $\lambda_j \in A$.

A Hilbert C^* -module need not to have a basis (as any module).

Hilbert C* modules

Hilbert C*-module

A right module M over A with an A-valued inner product such that

- 1
- $2 \qquad \langle b, a \rangle = \langle a, b \rangle^*;$
- $2 \qquad \langle b,a\rangle = \langle a,b\rangle^{*}$
- 3 $\langle a, b_1 \lambda_1 + b_2 \lambda_2 \rangle = \langle a, b_1 \rangle \lambda_1 + \langle a, b_2 \rangle \lambda_2.$ Here $a, b, b \in M$ $\lambda \in A$

Here, $a, b, b_j \in M$, $\lambda_j \in A$. A Hilbert C^* -module need not to have a basis (as any

 $\langle a,a\rangle > 0, \langle a,a\rangle = 0 \Leftrightarrow a=0;$

module).

Standard Hilbert module

 $I^{2}(A) = \{x = (\xi_{1}, \xi_{2}, \dots) \mid \xi_{j} \in A, \sum_{j=1}^{+\infty} \xi_{j}^{*} \xi_{j} \text{ conv. in } || \cdot || \}.$

Standard Hilbert module over a unital algebra has a (Riesz) basis $e_j = (0, 0, \dots, 1, 0, \dots)$, 1 is the unit of A placed on j-th entry.

"Compact" operators

"Compact" operators on a module M

Closed linear span of the operators $\Theta_{y,z}:M\to M$, $\Theta_{y,z}(x)=z\,\langle y,x\rangle$.

Such operators need not to map bounded sets into relatively compact. Hence the quotation marks.

"Compact" operators

"Compact" operators on a module M

Closed linear span of the operators $\Theta_{y,z}:M\to M$, $\Theta_{y,z}(x)=z\,\langle y,x\rangle.$

Such operators need not to map bounded sets into relatively compact. Hence the quotation marks.

Problem

Find a topology on $l^2(A)$ such that "compact" operators map bounded into totally bounded sets.

If possible, prove the converse, if A maps bounded into totally bounded sets then A is "compact".

"Compact" operators

"Compact" operators on a module M

Closed linear span of the operators $\Theta_{y,z}:M\to M$, $\Theta_{y,z}(x)=z\,\langle y,x\rangle.$

Such operators need not to map bounded sets into relatively compact. Hence the quotation marks.

Problem

Find a topology on $l^2(A)$ such that "compact" operators map bounded into totally bounded sets.

If possible, prove the converse, if A maps bounded into totally bounded sets then A is "compact".

Result

The first problem is solved. The second partially.

Locally convex spaces

A locally convex space

Determined by a family of seminorms p_i , $i \in I$. Seminorms gives rise to the family of semimetrics $d_i(x, y) = p_i(x - y)$.

A locally convex space is a uniform space.

Locally convex spaces

A locally convex space

Determined by a family of seminorms p_i , $i \in I$. Seminorms gives rise to the family of semimetrics $d_i(x, y) = p_i(x - y)$.

A locally convex space is a uniform space.

A set is totally bounded if it is totally bounded in all d_i . A net is a Cauchy net if it is Cauchy net in all d_i . A space is complete if all Cauchy nets converge. Relatively compact \Rightarrow totally bounded.

The converse is true provided the space is complete.

Locally convex spaces

A locally convex space

Determined by a family of seminorms p_i , $i \in I$.

Seminorms gives rise to the family of semimetrics $d_i(x, y) = p_i(x - y)$.

A locally convex space is a uniform space.

A set is totally bounded if it is totally bounded in all d_i . A net is a Cauchy net if it is Cauchy net in all d_i . A space is complete if all Cauchy nets converge.

Relatively compact \Rightarrow totally bounded.

The converse is true provided the space is complete.

In further

M is a Hilbert module over a W*-algebra. From now to the end.

PF topologies

Weak and strong topology:

- weak τ_1 generated by functionals of the form $M \ni x \mapsto \varphi(\langle y, x \rangle)$, $y \in M$, φ a normal state. Seminorms $|\varphi(\langle y, x \rangle)|$.
- strong τ_2 generated by seminorms $\varphi(\langle x, x \rangle)^{1/2}$, φ a normal state.

Always $\tau_1 \subset \tau_2$.

PF topologies Weak and strong topology:

weak τ_1 generated by functionals of the form $M \ni x \mapsto \varphi(\langle y, x \rangle)$, $y \in M$, φ a normal state. Seminorms $|\varphi(\langle y, x \rangle)|$.

strong τ_2 generated by seminorms $\varphi(\langle x, x \rangle)^{1/2}$, φ a normal state.

Always $\tau_1 \subset \tau_2$.

Normal states Positive functionals $\varphi \in A_*$, $||\varphi|| = 1$. Then $\varphi(1) = 1$.

PF topologies Weak and strong topology:

weak τ_1 generated by functionals of the form $M\ni x\mapsto \varphi(\langle y,x\rangle),\ y\in M,\ \varphi$ a normal state. Seminorms $|\varphi(\langle y,x\rangle)|$.

strong τ_2 generated by seminorms $\varphi(\langle x, x \rangle)^{1/2}$, φ a normal state.

Always $\tau_1 \subset \tau_2$.

Normal states Positive functionals $\varphi \in A_*$, $||\varphi|| = 1$. Then $\varphi(1) = 1$.

To continue, we need a definition of a dual module.

PF topologies Weak and strong topology: weak τ_1 generated by functionals of the form

weak
$$\tau_1$$
 generated by functionals of the form $M \ni x \mapsto \varphi(\langle y, x \rangle)$, $y \in M$, φ a normal state.

Seminorms $|\varphi(\langle y, x \rangle)|$. strong τ_2 generated by seminorms $\varphi(\langle x, x \rangle)^{1/2}$, φ a

normal state.

Always $\tau_1 \subset \tau_2$.

Positive functionals $\varphi \in A_*$, $||\varphi|| = 1$. Then $\varphi(1) = 1$. Normal states

Selfdual

A module M over A such that all A-linear maps from M module to A are of the form $x \mapsto \langle y, x \rangle$ for some $y \in M$.

To continue, we need a definition of a dual module.

Otherwise, the space of A linear maps forms another module M' – the dual module. M' is always selfdual.

Properties of PF topologies

Weak PF topology

If M is selfdual, then M is a dual Banach space. τ_1 – exactly weak-* topology.

(Paschke TAMS 1973).

Properties of PF topologies

Weak PF topology

If M is selfdual, then M is a dual Banach space.

topology τ_1 – exactly weak-* topology.

(Paschke TAMS 1973).

Completeness

The following is equivalent:

- M is selfdual;
- The unit ball in M is complete in τ_1 ;
- The unit ball in M is complete in τ_2 .

(Frank ZAA 1990)

Properties of PF topologies

Weak PF topology

If M is selfdual, then M is a dual Banach space.

 au_1 – exactly weak-* topology.

(Paschke TAMS 1973).

Completeness

The following is equivalent:

M is selfdual;

■ The unit ball in M is complete in τ_1 ;

The unit ball in M is complete in τ_2 .

(Frank ZAA 1990)

PF are not suitable

 τ_1 is too weak – the unit ball in $I^2(A)$ is compact. τ_2 is too strong – the unit ball in A^n is not compact.

Here is the right topology – τ !

Definition

 $M = I^2(A)$ – the standard Hilbert module. Topology τ generated by seminorms

$$p_{\varphi,y}(x) = \sqrt{\sum_{j=1}^{+\infty} |\varphi(\eta_j^* \xi_j)|^2},$$

where arphi is a normal state and $y=(\eta_1,\eta_2,\dots)$ satisfies

$$\sup_{j} \varphi(\eta_{j}^{*}\eta_{j}) < +\infty. \tag{1}$$

Note that y need not to $\in I^2(A)$. However, for any $y = (\eta_1, \eta_2, ...)$, the sequence $\eta_j/\varphi(\eta_j^*\eta_j)^{1/2}$ fulfills (1).

Properties of τ

Properties

- 1 $\tau_1 \subset \tau \subset \tau_2$;
- The unit ball in $l^2(A)$ is not complete in all τ_1 , τ , τ_2 ($l^2(A)$ is not selfdual);
- Restricted to A^n (forget all after n-th entry) $\tau_1 = \tau$;
- The unit ball in A^n is compact in τ , hence totally bounded (A^n is selfdual);
- 5 The unit ball in $l^2(A)$ is not totally bounded in τ .

Property 1

$$1 \quad \tau_1 \subset \tau \subset \tau_2.$$

Property 1

1
$$\tau_1 \subset \tau \subset \tau_2$$
.

Proof

$$au_1 \subset$$

$$au_1 \subset au$$
 $y = (\eta_1, \eta_2, \dots) \in l^2(\mathcal{A}) \Rightarrow \zeta_j = \eta_j/\varphi(\eta_j^* \eta_j)^{1/2}$ fulfils (1). Hence

$$\tau_1 \subset \tau$$

$$y = (\eta_1, \eta_2, \dots) \in l^2(\mathcal{A})$$
(1). Hence

$$\left(\sum_{j=1}^{+\infty} \eta_j^* \xi\right)$$

$$|\varphi(\langle y, x \rangle)| = \left| \varphi\left(\sum_{j=1}^{+\infty} \eta_j^* \xi_j\right) \right| = \left| \sum_{j=1}^{+\infty} \varphi(\eta_j^* \eta_j)^{\frac{1}{2}} \varphi(\zeta_j^* \xi_j) \right| \le$$

$$\le \left(\sum_{j=1}^{+\infty} \varphi(\eta_j^* \eta_j)\right)^{\frac{1}{2}} \left(\sum_{j=1}^{+\infty} |\varphi(\zeta_j^* \xi_j)|^2\right)^{\frac{1}{2}} =$$

$$egin{aligned} iglet_{j=1} & f \ &= arphi(\langle y,y
angle)^{rac{1}{2}} p_{arphi,z}(x). \end{aligned}$$

Property 1 - continuation

$$au \subset au_2$$
 $(\xi, \eta) \mapsto \varphi(\xi^* \eta)$ – a semi inner product. Hence $|\varphi(\xi^* \eta)| \leq \varphi(\xi^* \xi)^{\frac{1}{2}} \varphi(\eta^* \eta)^{\frac{1}{2}}$.

$$\rho_{\varphi,y}(x)^{2} = \sum_{j=1}^{+\infty} |\varphi(\eta_{j}^{*}\xi_{j})|^{2} \leq \sum_{j=1}^{+\infty} \varphi(\xi_{j}^{*}\xi_{j})\varphi(\eta_{j}^{*}\eta_{j}) \leq \\
\leq \sum_{j=1}^{+\infty} \varphi(\xi_{j}^{*}\xi_{j}) = \varphi(\langle x, x \rangle).$$

Property 1 - continuation

$$\tau \subset \tau_2 \quad (\xi, \eta) \mapsto \varphi(\xi^* \eta) - \text{a semi inner product. Hence}$$
$$|\varphi(\xi^* \eta)| \leq \varphi(\xi^* \xi)^{\frac{1}{2}} \varphi(\eta^* \eta)^{\frac{1}{2}}.$$

$$p_{\varphi,y}(x)^{2} = \sum_{j=1}^{+\infty} |\varphi(\eta_{j}^{*}\xi_{j})|^{2} \leq \sum_{j=1}^{+\infty} \varphi(\xi_{j}^{*}\xi_{j})\varphi(\eta_{j}^{*}\eta_{j}) \leq$$
$$\leq \sum_{j=1}^{+\infty} \varphi(\xi_{j}^{*}\xi_{j}) = \varphi(\langle x, x \rangle).$$

Remark

These proofs works also for $l^2(A)' = \{x = (\xi_n)_{n \ge 1} \mid \sup_n ||\sum_{j=1}^n \xi_j^* \xi_j|| < +\infty\}.$

Property 2

The unit ball in $I^2(A)$ is not complete in all τ_1 , τ , τ_2 $(I^2(A)$ is not selfdual).

Property 2

Proof

 $(I^2(A))$ is not selfdual).

Unit ball in $l^2(A)' \ni x^{\alpha}$ Cauchy net $\Rightarrow \xi_k^{\alpha}$ C. net in A. (Choose $l^2(A)'$ is $\eta_k = 1$, $\eta_j = 0$ for $j \neq k$.) Hence $\xi_k^{\alpha} \stackrel{w*}{\to} \xi_k$, and complete $\sum_{k=1}^{k} |\varphi(\eta_i^* \xi_i^{\alpha})|^2 \to \sum_{k=1}^{k} |\varphi(\eta_i^* \xi_i)|^2$.

The unit ball in $I^2(A)$ is not complete in all τ_1 , τ , τ_2

Let $\eta_j = \xi_j/\varphi(\xi_j^*\xi_j)^{\frac{1}{2}}$. We get

$$\sum_{j=1}^{k} \varphi(\xi_j^* \xi_j) = \sum_{j=1}^{k} |\varphi(\eta_j^* \xi_j)|^2 = \lim_{\alpha} \sum_{j=1}^{k} |\varphi(\eta_j^* \xi_j^{\alpha})|^2 \le$$
$$\le ||x|| \le 1.$$

Take $\lim_{k\to+\infty}$ to conclude $x=(\xi_1,\xi_2,\dots)\in l^2(\mathcal{A})'$.

Property 2 - continuation

Finally

$$\sum_{j=1}^k |\varphi(\eta_j^*\xi_j^\alpha) - \varphi(\eta_j^*\xi_j^\beta)|^2 \le \sum_{j=1}^{+\infty} |\varphi(\eta_j^*\xi_j^\alpha) - \varphi(\eta_j^*\xi_j^\beta)|^2 < \varepsilon,$$

take the limit over β and limit as $k \to +\infty$.

Property 2 - continuation

Finally

$$\sum_{j=1}^{k} |\varphi(\eta_j^* \xi_j^{\alpha}) - \varphi(\eta_j^* \xi_j^{\beta})|^2 \le \sum_{j=1}^{+\infty} |\varphi(\eta_j^* \xi_j^{\alpha}) - \varphi(\eta_j^* \xi_j^{\beta})|^2 < \varepsilon,$$

take the limit over β and limit as $k \to +\infty$.

 $(\xi_1, \xi_2, \dots, \xi_n, 0, 0, \dots) = x_n \to x = (\xi_1, \dots) \in I^2(A)'.$

Indeed, by normality of φ we have

$$p_{\varphi,y}(x-x_n)^2 \leq \varphi(\langle x-x_n, x-x_n\rangle) = \varphi\left(\sum_{j=n}^{+\infty} \xi_j^* \xi_j\right) \to 0,$$

as $n \to +\infty$.

The ball in
$$l^2(A)$$
 is dense in the ball in $l^2(A)'$

Properties 3 & 4

Restricted to A^n (forget all after n-th entry) $\tau_1 = \tau$.

Properties 3 & 4

Restricted to A^n (forget all after n-th entry) $\tau_1 = \tau$.

$$\tau \subset \tau_1$$

$$p_{\varphi,y}(x) = \left(\sum_{j=1}^{n} |\varphi(\eta_j^* \xi_j)|^2\right)^{\frac{1}{2}} \le$$

$$\le \sum_{j=1}^{n} |\varphi(\eta_j^* \xi_j)| = \sum_{j=1}^{n} |\varphi(\langle z_j, x \rangle)|,$$

where $z_j = (0, ..., 0, \eta_j, 0, ..., 0)$.

Properties 3 & 4

Restricted to A^n (forget all after n-th entry) $\tau_1 = \tau$.

$$\tau \subset \tau_1$$

$$p_{\varphi,y}(x) = \left(\sum_{j=1}^{n} |\varphi(\eta_j^* \xi_j)|^2\right)^{\frac{1}{2}} \le$$

$$\le \sum_{j=1}^{n} |\varphi(\eta_j^* \xi_j)| = \sum_{j=1}^{n} |\varphi(\langle z_j, x \rangle)|,$$

where $z_i = (0, \dots, 0, \eta_i, 0, \dots, 0)$.

The unit ball in A^n is compact in τ , hence totally bounded $(A^n$ is selfdual).

Follows easily from the previous.

Property 5

5

The unit ball in $I^2(A)$ is not totally bounded in τ .

Property 5

5

The unit ball in $I^2(A)$ is not totally bounded in τ .

There is a totally discrete sequence.

Choose $\eta_j=1$ for all j and φ arbitrary. Then $p_{\varphi,y}(e_n-e_m)=\sqrt{2}.$

"Compact" \Rightarrow compact

Proposition

T is "compact" $\Rightarrow A$ is compact (i.e. maps bounded into totally bounded sets).

"Compact" \Rightarrow compact

Proposition

T is "compact" $\Rightarrow A$ is compact (i.e. maps bounded into totally bounded sets).

Proof Observe the following three facts:

- Projections $P_n: I^2(A) \to I^2(A)$, $P_n(\xi_1, \ldots, \xi_n, \xi_{n+1}, \ldots) = (\xi_1, \ldots, \xi_n, 0, \ldots)$ make an approximate identity in the algebra of "compact" operators;
- 2 The property of being compact is *A* linear;
- The property of being compact is stable under limits, either uniform, or in τ .

"Compact" \Rightarrow compact

Proposition

T is "compact" \Rightarrow A is compact (i.e. maps bounded into totally bounded sets).

Proof Observe the following three facts:

- 1 Projections $P_n: I^2(A) \to I^2(A)$, $P_n(\xi_1,...,\xi_n,\xi_{n+1},...) = (\xi_1,...,\xi_n,0,...)$ make an approximate identity in the algebra of "compact" operators;
- The property of being compact is A linear;
- The property of being compact is stable under limits, 3 either uniform, or in τ .

The first of them is well known. The last two are easy to derive.

"Compact" ⇒ compact – continuation

Reduce to rank By 2 and 3, it suffices to consider
$$x \mapsto \Theta_{y,z}(x) = z \langle y, x \rangle$$
.

"Compact" ⇒ compact – continuation

Reduce to rank

By 2 and 3, it suffices to consider $x \mapsto \Theta_{v,z}(x) = z \langle y, x \rangle.$

 $\operatorname{ran} \Theta \subseteq A^n$ If $z = e_i \zeta$, $\zeta \in A$, we have compactness of the unit ball in A^n .

"Compact" \Rightarrow compact – continuation

Reduce to rank

By 2 and 3, it suffices to consider $x \mapsto \Theta_{v,z}(x) = z \langle y, x \rangle.$

 $\operatorname{ran} \Theta \subseteq A^n$ If $z = e_i \zeta$, $\zeta \in A$, we have compactness of the unit ball in A^n .

Appr. by basis

Otherwise, if $z = (\zeta_1, \zeta_2, ...)$. Then $z = \sum_{i=1}^{+\infty} e_i \zeta_i$ (conv. in the norm). Since $||\Theta_{v,z} - \Theta_{v,z'}|| \le ||y|| ||z - z'||$, we have

$$\Theta_{y,z} = \lim_{n \to +\infty} \sum_{i=1}^n \Theta_{y,e_j\zeta_j}.$$

Compact ⇒ "compact" – a partial result

Proposition

If A = B(H) the converse is true: If T is compact then T is "compact".

Compact ⇒ "compact" – a partial result

Proposition

If A = B(H) the converse is true: If T is compact then T is "compact".

Proof (idea)

The proof is carried out as follows: For T not "compact" construct a totally discrete sequence in the image of the unit ball. The proof is highly technical (many indices, ε 's etc.) – hence omitted. The following Lemma plays the key roll.

Compact ⇒ "compact" – a partial result

Proposition If A = B(H) the converse is true: If T is compact then T is "compact".

Proof (idea) The proof is carried out as follows: For T not "compact" construct a totally discrete sequence in the image of the unit ball. The proof is highly technical (many indices, ε 's etc.) – hence omitted. The following Lemma plays the key roll.

The Lemma Let $a_n \in B(H)$ be a sequence of positive operators, such that $||a_n|| > \delta$. Then there is a normal state φ , and unitaries v_n , v_n such that $\varphi(v_n^* a_n v_n) > \delta$.

A counterexample

For A

Let $p_i \in A$ be mutually orthogonal nontrivial **commutative** projections. Then $T: I^2(A) \to I^2(A)$,

$$Tx = T(\xi_1, \xi_2, \dots) = (p_1\xi_1, p_2\xi_2, \dots)$$

is compact, but not "compact"

A counterexample

Let $p_i \in A$ be mutually orthogonal nontrivial **commutative** projections. Then $T: I^2(A) \to I^2(A)$,

$$Tx = T(\xi_1, \xi_2, \dots) = (p_1\xi_1, p_2\xi_2, \dots)$$

is compact, but not "compact"

Proof (outline)

To see T is not "compact" observe that $||T - P_n T|| = 1$ contradicting P_n is an approximate identity.

To see T is compact, note for any seminorm $p(T - P_n T) \rightarrow 0$. This preserves compactness.

A counterexample

Let $p_i \in A$ be mutually orthogonal nontrivial **commutative** projections. Then $T: I^2(A) \to I^2(A)$,

$$Tx = T(\xi_1, \xi_2, \dots) = (p_1\xi_1, p_2\xi_2, \dots)$$

is compact, but not "compact"

Proof (outline)

To see T is not "compact" observe that $||T - P_n T|| = 1$ contradicting P_n is an approximate identity.

To see T is compact, note for any seminorm $p(T - P_n T) \rightarrow 0$. This preserves compactness.

Also the sequence p_n contradicts the Lemma.

Problems for further work

Problem 1

Describe W^* -algebras for which the Lemma is true. We suspect it is valid for factors.

Problems for further work

- **Problem 1** Describe W^* -algebras for which the Lemma is true. We suspect it is valid for factors.
- Problem 2 Extend the presented results to modules over C^* -algebras using their enveloping W^* -algebras. For A C^* -algebra, its W^* -envelope is its second dual A^{**} which appears to be isomorphic to the bicommutant $\pi(A)''$, where π is the universal representation.

Problems for further work

- **Problem 1** Describe W^* -algebras for which the Lemma is true. We suspect it is valid for factors.
- **Problem 2** Extend the presented results to modules over C^* -algebras using their enveloping W^* -algebras. For A C^* -algebra, its W^* -envelope is its second dual A^{**} which appears to be isomorphic to the bicommutant $\pi(A)''$, where π is the universal representation.
- **Problem 3** Extend the presented results to any module over A (not only for $I^2(A)$, i.e. make seminorms independent of coordinates. It might be difficult.

Thanks for your attention

Complete proofs at https://arxiv.org/abs/1610.06956

Thanks for your attention

```
Complete proofs at https://arxiv.org/abs/1610.06956
```

To make it easier to remember:

- 1610 Henri IV of France assassinated by Ravaillac
 - 069 it is easy to remember. I guess?!
 - 56 due to previous students often get 5 and 6