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Algebras

C ∗-algebra A Banach algebra with an involution such that ||a∗a|| = ||a||2.

Any C ∗ algebra has a representation as a subalgebra of B(H) for some
Hilbert space H – Gelfand-Naimark theorem.

W ∗-algebra A C ∗-algebra that has a predual.

Such a predual is unique. Its elements are called normal. W ∗-algebra
has a strongly (or weakly, or ultraweakly, etc.) closed representation.

Examples

C (K ) is a C ∗-algebra, but not W ∗.

B(H) is a W ∗-algebra. B(H)∗ ∼= S1.

L∞(X ;µ) is a W ∗-algebra. L∞(X ;µ)∗ ∼= L1(X ;µ).
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Hilbert C ∗ modules

Hilbert C ∗-module A right module M over A with an A-valued inner product such that

1 〈a, a〉 ≥ 0, 〈a, a〉 = 0⇔ a = 0;

2 〈b, a〉 = 〈a, b〉∗;
3 〈a, b1λ1 + b2λ2〉 = 〈a, b1〉λ1 + 〈a, b2〉λ2.

Here, a, b, bj ∈ M, λj ∈ A.
A Hilbert C ∗-module need not to have a basis (as any module).

Standard Hilbert
module

l2(A) = {x = (ξ1, ξ2, . . . ) | ξj ∈ A,
∑+∞

j=1 ξ
∗
j ξj conv. in || · ||}.

Standard Hilbert module over a unital algebra has a (Riesz) basis
ej = (0, 0, . . . , 1, 0, . . . ), 1 is the unit of A placed on j-th entry.
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”Compact” operators

”Compact”
operators on a

module M

Closed linear span of the operators Θy ,z : M → M, Θy ,z(x) = z 〈y , x〉.

Such operators need not to map bounded sets into relatively compact.
Hence the quotation marks.

Problem Find a topology on l2(A) such that ”compact” operators map bounded
into totally bounded sets.

If possible, prove the converse, if A maps bounded into totally bounded
sets then A is ”compact”.

Result The first problem is solved. The second partially.
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Locally convex spaces

A locally convex
space

Determined by a family of seminorms pi , i ∈ I .
Seminorms gives rise to the family of semimetrics di (x , y) = pi (x − y).
A locally convex space is a uniform space.

A set is totally bounded if it is totally bounded in all di .
A net is a Cauchy net if it is Cauchy net in all di .
A space is complete if all Cauchy nets converge.
Relatively compact ⇒ totally bounded.
The converse is true provided the space is complete.

In further M is a Hilbert module over a W ∗-algebra. From now to the end.
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Paschke-Frank topologies

PF topologies Weak and strong topology:

weak τ1 generated by functionals of the form M 3 x 7→ ϕ(〈y , x〉),
y ∈ M, ϕ a normal state. Seminorms |ϕ(〈y , x〉)|.
strong τ2 generated by seminorms ϕ(〈x , x〉)1/2, ϕ a normal state.

Always τ1 ⊂ τ2.

Normal states Positive functionals ϕ ∈ A∗, ||ϕ|| = 1. Then ϕ(1) = 1.

To continue, we need a definition of a dual module.

Selfdual module A module M over A such that all A-linear maps from M to A are of the
form x 7→ 〈y , x〉 for some y ∈ M.

Otherwise, the space of A linear maps forms another module M ′ – the
dual module. M ′ is always selfdual.
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Properties of PF topologies

Weak PF topology If M is selfdual, then M is a dual Banach space.
τ1 – exactly weak-∗ topology.

(Paschke TAMS 1973).

Completeness The following is equivalent:

M is selfdual;

The unit ball in M is complete in τ1;

The unit ball in M is complete in τ2.

(Frank ZAA 1990)

PF are not suitable τ1 is too weak – the unit ball in l2(A) is compact.
τ2 is too strong – the unit ball in An is not compact.
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Here is the right topology – τ !

Definition M = l2(A) – the standard Hilbert module. Topology τ generated by
seminorms

pϕ,y (x) =

√√√√+∞∑
j=1

|ϕ(η∗j ξj)|2,

where ϕ is a normal state and y = (η1, η2, . . . ) satisfies

sup
j
ϕ(η∗j ηj) < +∞. (1)

Note that y need not to ∈ l2(A). However, for any y = (η1, η2, . . . ),
the sequence ηj/ϕ(η∗j ηj)

1/2 fulfills (1).



Properties of τ

Properties

1 τ1 ⊂ τ ⊂ τ2;

2 The unit ball in l2(A) is not complete in all τ1, τ , τ2 (l2(A) is not
selfdual);

3 Restricted to An (forget all after n-th entry) τ1 = τ ;

4 The unit ball in An is compact in τ , hence totally bounded (An is
selfdual);

5 The unit ball in l2(A) is not totally bounded in τ .



Property 1

1 τ1 ⊂ τ ⊂ τ2.

Proof

τ1 ⊂ τ y = (η1, η2, . . . ) ∈ l2(A) ⇒ ζj = ηj/ϕ(η∗j ηj)
1/2 fulfils (1). Hence

|ϕ(〈y , x〉)| =

∣∣∣∣∣∣ϕ
+∞∑

j=1

η∗j ξj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
+∞∑
j=1

ϕ(η∗j ηj)
1
2ϕ(ζ∗j ξj)

∣∣∣∣∣∣ ≤
≤

+∞∑
j=1

ϕ(η∗j ηj)

 1
2
+∞∑

j=1

|ϕ(ζ∗j ξj)|2
 1

2

=

= ϕ(〈y , y〉)
1
2 pϕ,z(x).
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Property 1 - continuation

τ ⊂ τ2 (ξ, η) 7→ ϕ(ξ∗η) – a semi inner product. Hence

|ϕ(ξ∗η)| ≤ ϕ(ξ∗ξ)
1
2ϕ(η∗η)

1
2 .

pϕ,y (x)2 =
+∞∑
j=1

|ϕ(η∗j ξj)|2 ≤
+∞∑
j=1

ϕ(ξ∗j ξj)ϕ(η∗j ηj) ≤

≤
+∞∑
j=1

ϕ(ξ∗j ξj) = ϕ(〈x , x〉).

Remark These proofs works also for
l2(A)′ = {x = (ξn)n≥1 | supn ||

∑n
1 ξ
∗
j ξj || < +∞}.



Property 1 - continuation

τ ⊂ τ2 (ξ, η) 7→ ϕ(ξ∗η) – a semi inner product. Hence

|ϕ(ξ∗η)| ≤ ϕ(ξ∗ξ)
1
2ϕ(η∗η)

1
2 .

pϕ,y (x)2 =
+∞∑
j=1

|ϕ(η∗j ξj)|2 ≤
+∞∑
j=1

ϕ(ξ∗j ξj)ϕ(η∗j ηj) ≤

≤
+∞∑
j=1

ϕ(ξ∗j ξj) = ϕ(〈x , x〉).

Remark These proofs works also for
l2(A)′ = {x = (ξn)n≥1 | supn ||

∑n
1 ξ
∗
j ξj || < +∞}.



Property 2

2 The unit ball in l2(A) is not complete in all τ1, τ , τ2 (l2(A) is not
selfdual).

Proof

Unit ball in l2(A)′ is
complete

l2(A)′ 3 xα Cauchy net ⇒ ξαk C. net in A. (Choose ηk = 1, ηj = 0 for

j 6= k .) Hence ξαk
w∗→ ξk , and

∑k
j=1 |ϕ(η∗j ξ

α
j )|2 →

∑k
j=1 |ϕ(η∗j ξj)|2.

Let ηj = ξj/ϕ(ξ∗j ξj)
1
2 . We get

k∑
j=1

ϕ(ξ∗j ξj) =
k∑

j=1

|ϕ(η∗j ξj)|2 = lim
α

k∑
j=1

|ϕ(η∗j ξ
α
j )|2 ≤

≤ ||x || ≤ 1.

Take limk→+∞ to conclude x = (ξ1, ξ2, . . . ) ∈ l2(A)′.
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Property 2 - continuation

Finally

k∑
j=1

|ϕ(η∗j ξ
α
j )− ϕ(η∗j ξ

β
j )|2 ≤

+∞∑
j=1

|ϕ(η∗j ξ
α
j )− ϕ(η∗j ξ

β
j )|2 < ε,

take the limit over β and limit as k → +∞.

The ball in l2(A) is
dense in the ball in

l2(A)′

(ξ1, ξ2, . . . , ξn, 0, 0, . . . ) = xn → x = (ξ1, . . . ) ∈ l2(A)′.
Indeed, by normality of ϕ we have

pϕ,y (x − xn)2 ≤ ϕ(〈x − xn, x − xn〉) = ϕ

+∞∑
j=n

ξ∗j ξj

→ 0,

as n→ +∞.
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Properties 3 & 4

3 Restricted to An (forget all after n-th entry) τ1 = τ .

τ ⊂ τ1

pϕ,y (x) =

 n∑
j=1

|ϕ(η∗j ξj)|2
 1

2

≤

≤
n∑

j=1

|ϕ(η∗j ξj)| =
n∑

j=1

|ϕ(〈zj , x〉)|,

where zj = (0, . . . , 0, ηj , 0, . . . , 0).

4 The unit ball in An is compact in τ , hence totally bounded (An is
selfdual).

Follows easily from the previous.
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Property 5

5 The unit ball in l2(A) is not totally bounded in τ .

There is a totally discrete sequence.

Choose ηj = 1 for all j and ϕ arbitrary. Then pϕ,y (en − em) =
√

2.
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”Compact” ⇒ compact

Proposition T is ”compact” ⇒ A is compact (i.e. maps bounded into totally
bounded sets).

Proof Observe the following three facts:

1 Projections Pn : l2(A)→ l2(A),
Pn(ξ1, . . . , ξn, ξn+1, . . . ) = (ξ1, . . . , ξn, 0, . . . ) make an approximate
identity in the algebra of ”compact” operators;

2 The property of being compact is A linear;

3 The property of being compact is stable under limits, either uniform, or
in τ .

The first of them is well known. The last two are easy to derive.
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”Compact” ⇒ compact – continuation

Reduce to rank 1 By 2 and 3, it suffices to consider x 7→ Θy ,z(x) = z 〈y , x〉.

ran Θ ⊆ An If z = ejζ, ζ ∈ A, we have compactness of the unit ball in An.

Appr. by basis Otherwise, if z = (ζ1, ζ2, . . . ). Then z =
∑+∞

j=1 ejζj (conv. in the
norm). Since ||Θy ,z −Θy ,z ′ || ≤ ||y || ||z − z ′||, we have

Θy ,z = lim
n→+∞

n∑
j=1

Θy ,ejζj .
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Compact ⇒ ”compact” – a partial result

Proposition If A = B(H) the converse is true: If T is compact then T is
”compact”.

Proof (idea) The proof is carried out as follows:
For T not ”compact” construct a totally discrete sequence in the
image of the unit ball. The proof is highly technical (many indices, ε’s
etc.) – hence omitted. The following Lemma plays the key roll.

The Lemma Let an ∈ B(H) be a sequence of positive operators, such that
||an|| > δ. Then there is a normal state ϕ, and unitaries υn, νn such
that ϕ(υ∗nanνn) > δ.
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A counterexample

For A commutative Let pj ∈ A be mutually orthogonal nontrivial projections. Then
T : l2(A)→ l2(A),

Tx = T (ξ1, ξ2, . . . ) = (p1ξ1, p2ξ2, . . . )

is compact, but not ”compact”

Proof (outline) To see T is not ”compact” observe that ||T − PnT || = 1 contradicting
Pn is an approximate identity.
To see T is compact, note for any seminorm p(T − PnT )→ 0. This
preserves compactness.

Also the sequence pn contradicts the Lemma.
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Problems for further work

Problem 1 Describe W ∗-algebras for which the Lemma is true. We suspect it is
valid for factors.

Problem 2 Extend the presented results to modules over C ∗-algebras using their
enveloping W ∗-algebras. For A C ∗-algebra, its W ∗-envelope is its
second dual A∗∗ which appears to be isomorphic to the bicommutant
π(A)′′, where π is the universal representation.

Problem 3 Extend the presented results to any module over A (not only for l2(A),
i.e. make seminorms independent of coordinates. It might be difficult.
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Thanks for your attention

Complete proofs at https://arxiv.org/abs/1610.06956

To make it easier to remember:

1610 Henri IV of France assassinated by Ravaillac
069 it is easy to remember. I guess?!
56 due to previous students often get 5 and 6
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