	Compact and "compact" operators on the standard Hilbert module over a W^* -algebra
Who?	Dragoljub J. Kečkić and Zlatko Lazović
From?	Faculty of Mathematics, University of Belgrade
When?	November 4th 2016

Algebras

C*-algebra A Banach algebra with an involution such that $||a^*a|| = ||a||^2$.

Any C^* algebra has a representation as a subalgebra of B(H) for some Hilbert space H – Gelfand-Naimark theorem.

Algebras

 C^* -algebraA Banach algebra with an involution such that $||a^*a|| = ||a||^2$.Any C^* algebra has a representation as a subalgebra of B(H) for some
Hilbert space H – Gelfand-Naimark theorem.

 W^* -algebra A C^* -algebra that has a predual.

Such a predual is unique. Its elements are called normal. W^* -algebra has a strongly (or weakly, or ultraweakly, etc.) closed representation.

	Algebras
C* almahua	A Densch algebra with an involution such that $ _{a}^{*}a _{a} _{a}^{2}$
C [*] -algebra	A Banach algebra with an involution such that $ a a = a ^2$.
	Any C^* algebra has a representation as a subalgebra of $B(H)$ for some Hilbert space H – Gelfand-Naimark theorem.
W*-algebra	A C^* -algebra that has a predual.
	Such a predual is unique. Its elements are called normal. W^* -algebra has a strongly (or weakly, or ultraweakly, etc.) closed representation.
Examples	
	$C(K)$ is a C^* -algebra, but not W^* .
	$B(H)$ is a W^* -algebra. $B(H)_*\cong \mathfrak{S}_1.$
-	$L^\infty(X;\mu)$ is a W^* -algebra. $L^\infty(X;\mu)_*\cong L^1(X;\mu)$.

Hilbert C* modules

Hilbert C*-module A right module M over A with an A-valued inner product such that

$$\langle a,a
angle \geq 0$$
, $\langle a,a
angle = 0 \Leftrightarrow a = 0$;

2
$$\langle b,a
angle=\langle a,b
angle^*;$$

3
$$\langle a, b_1\lambda_1 + b_2\lambda_2 \rangle = \langle a, b_1 \rangle \lambda_1 + \langle a, b_2 \rangle \lambda_2.$$

Here, a, b, $b_j \in M$, $\lambda_j \in A$. A Hilbert C^{*}-module need not to have a basis (as any module).

Hilbert C^* modules

Hilbert C*-module A right module M over A with an A-valued inner product such that

$$\begin{array}{ll} & \langle a,a\rangle \geq 0, \ \langle a,a\rangle = 0 \Leftrightarrow a = 0; \\ & \langle b,a\rangle = \langle a,b\rangle^*; \\ & 3 & \langle a,b_1\lambda_1 + b_2\lambda_2\rangle = \langle a,b_1\rangle \ \lambda_1 + \langle a,b_2\rangle \ \lambda_2. \\ & \text{Here, } a, b, \ b_j \in M, \ \lambda_j \in A. \\ & \text{A Hilbert } C^*\text{-module need not to have a basis (as any module).} \\ & \\ & \text{Standard Hilbert } \\ & \text{module} & l^2(A) = \{x = (\xi_1,\xi_2,\dots) \mid \xi_j \in A, \sum_{j=1}^{+\infty} \xi_j^*\xi_j \text{ conv. in } || \cdot || \}. \\ & \text{Standard Hilbert module over a unital algebra has a (Riesz) basis } \\ & e_j = (0,0,\dots,1,0,\dots), 1 \text{ is the unit of } A \text{ placed on } j\text{-th entry.} \end{array}$$

"Compact" operators

"Compact" operators on a module *M* Closed linear span of the operators $\Theta_{y,z} : M \to M$, $\Theta_{y,z}(x) = z \langle y, x \rangle$. Such operators need not to map bounded sets into relatively compact. Hence the quotation marks.

"Compact" operators

"Compact"Closed linear span of the operators $\Theta_{y,z} : M \to M$, $\Theta_{y,z}(x) = z \langle y, x \rangle$.operators on a
module MSuch operators need not to map bounded sets into relatively compact.
Hence the quotation marks.ProblemFind a topology on $l^2(A)$ such that "compact" operators map bounded

into totally bounded sets.

If possible, prove the converse, if A maps bounded into totally bounded sets then A is "compact".

"Compact" operators

Closed linear span of the operators $\Theta_{y,z}: M \to M, \ \Theta_{y,z}(x) = z \langle y, x \rangle$. "Compact" operators on a Such operators need not to map bounded sets into relatively compact. module MHence the quotation marks. Find a topology on $l^2(A)$ such that "compact" operators map bounded Problem into totally bounded sets. If possible, prove the converse, if A maps bounded into totally bounded sets then A is "compact". Result The first problem is solved. The second partially.

Locally convex spaces

A locally convex Determined by a family of seminorms p_i , $i \in I$. Seminorms gives rise to the family of semimetrics $d_i(x, y) = p_i(x - y)$. A locally convex space is a uniform space.

Locally convex spaces

A locally convex space Determined by a family of seminorms p_i , $i \in I$. Seminorms gives rise to the family of semimetrics $d_i(x, y) = p_i(x - y)$. A locally convex space is a uniform space.

A set is totally bounded if it is totally bounded in all d_i . A net is a Cauchy net if it is Cauchy net in all d_i . A space is complete if all Cauchy nets converge. Relatively compact \Rightarrow totally bounded. The converse is true provided the space is complete.

Locally convex spaces

A locally convex Determined by a family of seminorms p_i , $i \in I$. Seminorms gives rise to the family of semimetrics $d_i(x, y) = p_i(x - y)$. space A locally convex space is a uniform space. A set is totally bounded if it is totally bounded in all d_i . A net is a Cauchy net if it is Cauchy net in all d_i . A space is complete if all Cauchy nets converge. Relatively compact \Rightarrow totally bounded. The converse is true provided the space is complete. M is a Hilbert module over a W^* -algebra. From now to the end. In further

Paschke-Frank topologies

PF topologies Weak and strong topology:

- weak τ_1 generated by functionals of the form $M \ni x \mapsto \varphi(\langle y, x \rangle)$, $y \in M$, φ a normal state. Seminorms $|\varphi(\langle y, x \rangle)|$.
- strong τ₂ generated by seminorms φ(⟨x, x⟩)^{1/2}, φ a normal state.
 Always τ₁ ⊂ τ₂.

	Paschke-Frank topologies
PF topologies	Weak and strong topology:
-	weak τ_1 generated by functionals of the form $M \ni x \mapsto \varphi(\langle y, x \rangle)$, $y \in M$, φ a normal state. Seminorms $ \varphi(\langle y, x \rangle) $.
-	strong $ au_2$ generated by seminorms $arphi(\langle x,x angle)^{1/2}$, $arphi$ a normal state.
	Always $ au_1 \subset au_2$.
Normal states	Positive functionals $arphi \in {\mathcal A}_*$, $ arphi =1.$ Then $arphi(1)=1.$

	Paschke-Frank topologies
PF topologies	Weak and strong topology: weak τ_1 generated by functionals of the form $M \ni x \mapsto \varphi(\langle y, x \rangle)$, $y \in M$, φ a normal state. Seminorms $ \varphi(\langle y, x \rangle) $. strong τ_2 generated by seminorms $\varphi(\langle x, x \rangle)^{1/2}$, φ a normal state. Always $\tau_1 \subset \tau_2$.
Normal states	Positive functionals $\varphi \in A_*$, $ \varphi = 1$. Then $\varphi(1) = 1$. To continue, we need a definition of a dual module.

	Paschke-Frank topologies
PF topologies	Weak and strong topology:
-	weak τ_1 generated by functionals of the form $M \ni x \mapsto \varphi(\langle y, x \rangle)$, $y \in M$, φ a normal state. Seminorms $ \varphi(\langle y, x \rangle) $.
-	strong $ au_2$ generated by seminorms $arphi(\langle x,x angle)^{1/2}$, $arphi$ a normal state.
	Always $ au_1 \subset au_2$.
Normal states	Positive functionals $arphi \in {\mathcal A}_*$, $ arphi =1.$ Then $arphi(1)=1.$
	To continue, we need a definition of a dual module.
Selfdual module	A module M over A such that all A -linear maps from M to A are of the form $x \mapsto \langle y, x \rangle$ for some $y \in M$.
	Otherwise, the space of A linear maps forms another module M' – the dual module. M' is always selfdual.

Properties of PF topologies

Weak PF topology If M is selfdual, then M is a dual Banach space. τ_1 – exactly weak-* topology.

(Paschke TAMS 1973).

	Properties of PF topologies
Weak PF topology	If M is selfdual, then M is a dual Banach space. τ_1 – exactly weak-* topology.
	(Paschke TAMS 1973).
Completeness	The following is equivalent:
-	<i>M</i> is selfdual;
-	The unit ball in M is complete in $ au_1$;
-	The unit ball in M is complete in τ_2 .
	(Frank ZAA 1990)

	Properties of PF topologies
Weak PF topology	If M is selfdual, then M is a dual Banach space. $ au_1$ – exactly weak-* topology.
	(Paschke TAMS 1973).
Completeness ■	The following is equivalent: M is selfdual;
-	The unit ball in M is complete in $ au_1$;
-	The unit ball in M is complete in τ_2 .
	(Frank ZAA 1990)
PF are not suitable	$ au_1$ is too weak – the unit ball in $I^2(A)$ is compact. $ au_2$ is too strong – the unit ball in A^n is not compact.

Here is the right topology – τ !

Definition $M = l^2(A)$ – the standard Hilbert module. Topology τ generated by seminorms

$$p_{arphi,y}(x) = \sqrt{\sum_{j=1}^{+\infty} |arphi(\eta_j^*\xi_j)|^2},$$

where arphi is a normal state and $y=(\eta_1,\eta_2,\dots)$ satisfies

$$\sup_{j} \varphi(\eta_j^* \eta_j) < +\infty. \tag{1}$$

Note that y need not to $\in l^2(A)$. However, for any $y = (\eta_1, \eta_2, ...)$, the sequence $\eta_j / \varphi(\eta_i^* \eta_j)^{1/2}$ fulfills (1).

Properties of τ

Properties

- 1 $au_1 \subset au \subset au_2;$
- 2 The unit ball in $l^2(A)$ is not complete in all τ_1 , τ , τ_2 ($l^2(A)$ is not selfdual);
- 3 Restricted to A^n (forget all after *n*-th entry) $\tau_1 = \tau$;
- 4 The unit ball in A^n is compact in τ , hence totally bounded (A^n is selfdual);
- 5 The unit ball in $I^2(A)$ is not totally bounded in τ .

Property 1

1 $au_1 \subset au \subset au_2.$

Property 1

1 $au_1 \subset au \subset au_2.$

Proof

$$\tau_{1} \subset \tau \quad y = (\eta_{1}, \eta_{2}, \dots) \in l^{2}(\mathcal{A}) \Rightarrow \zeta_{j} = \eta_{j} / \varphi(\eta_{j}^{*} \eta_{j})^{1/2} \text{ fulfils (1). Hence}$$

$$|\varphi(\langle y, x \rangle)| = \left| \varphi\left(\sum_{j=1}^{+\infty} \eta_{j}^{*} \xi_{j}\right) \right| = \left| \sum_{j=1}^{+\infty} \varphi(\eta_{j}^{*} \eta_{j})^{\frac{1}{2}} \varphi(\zeta_{j}^{*} \xi_{j}) \right| \leq \left(\sum_{j=1}^{+\infty} \varphi(\eta_{j}^{*} \eta_{j})\right)^{\frac{1}{2}} \left(\sum_{j=1}^{+\infty} |\varphi(\zeta_{j}^{*} \xi_{j})|^{2}\right)^{\frac{1}{2}} = \varphi(\langle y, y \rangle)^{\frac{1}{2}} p_{\varphi,z}(x).$$

Property 1 - continuation

$$\begin{split} \tau \subset \tau_2 \quad & (\xi,\eta) \mapsto \varphi(\xi^*\eta) - \text{a semi inner product. Hence} \\ & |\varphi(\xi^*\eta)| \leq \varphi(\xi^*\xi)^{\frac{1}{2}} \varphi(\eta^*\eta)^{\frac{1}{2}}. \end{split}$$

$$egin{aligned} &p_{arphi,y}(x)^2 = \sum_{j=1}^{+\infty} |arphi(\eta_j^*\xi_j)|^2 \leq \sum_{j=1}^{+\infty} arphi(\xi_j^*\xi_j) arphi(\eta_j^*\eta_j) \leq \ &\leq \sum_{j=1}^{+\infty} arphi(\xi_j^*\xi_j) = arphi(\langle x,x
angle). \end{aligned}$$

Property 1 - continuation

 $\begin{aligned} \tau \subset \tau_2 \quad (\xi,\eta) \mapsto \varphi(\xi^*\eta) - \text{a semi inner product. Hence} \\ |\varphi(\xi^*\eta)| &\leq \varphi(\xi^*\xi)^{\frac{1}{2}} \varphi(\eta^*\eta)^{\frac{1}{2}}. \end{aligned}$

$$egin{aligned} &p_{arphi, \mathbf{y}}(\mathbf{x})^2 = \sum_{j=1}^{+\infty} ert arphi(\eta_j^* \xi_j) ert^2 \leq \sum_{j=1}^{+\infty} arphi(\xi_j^* \xi_j) arphi(\eta_j^* \eta_j) \leq \ &\leq \sum_{j=1}^{+\infty} arphi(\xi_j^* \xi_j) = arphi(\langle \mathbf{x}, \mathbf{x}
angle). \end{aligned}$$

Remark These proofs works also for

$$l^2(A)' = \{x = (\xi_n)_{n \ge 1} | \sup_n || \sum_{i=1}^n \xi_i^* \xi_i || < +\infty\}$$

Property 2

2 The unit ball in $l^2(A)$ is not complete in all τ_1 , τ , τ_2 ($l^2(A)$ is not selfdual).

Property 2

2 The unit ball in $l^2(A)$ is not complete in all τ_1 , τ , τ_2 ($l^2(A)$ is not selfdual).

Proof

Unit ball in $l^{2}(A)'$ is complete

$$\begin{split} l^{2}(A)' \ni x^{\alpha} \text{ Cauchy net} &\Rightarrow \xi_{k}^{\alpha} \text{ C. net in } A. \text{ (Choose } \eta_{k} = 1, \ \eta_{j} = 0 \text{ for } \\ j \neq k. \text{) Hence } \xi_{k}^{\alpha} \stackrel{\text{w*}}{\to} \xi_{k}, \text{ and } \sum_{j=1}^{k} |\varphi(\eta_{j}^{*}\xi_{j}^{\alpha})|^{2} \rightarrow \sum_{j=1}^{k} |\varphi(\eta_{j}^{*}\xi_{j})|^{2}. \\ \text{Let } \eta_{j} &= \xi_{j}/\varphi(\xi_{j}^{*}\xi_{j})^{\frac{1}{2}}. \text{ We get} \\ &\sum_{j=1}^{k} \varphi(\xi_{j}^{*}\xi_{j}) = \sum_{j=1}^{k} |\varphi(\eta_{j}^{*}\xi_{j})|^{2} = \lim_{\alpha} \sum_{j=1}^{k} |\varphi(\eta_{j}^{*}\xi_{j}^{\alpha})|^{2} \leq \\ &\leq ||x|| \leq 1. \end{split}$$

Take $\lim_{k\to+\infty}$ to conclude $x = (\xi_1, \xi_2, \dots) \in l^2(\mathcal{A})'$.

Property 2 - continuation

Finally

$$\sum_{j=1}^k |\varphi(\eta_j^*\xi_j^\alpha) - \varphi(\eta_j^*\xi_j^\beta)|^2 \leq \sum_{j=1}^{+\infty} |\varphi(\eta_j^*\xi_j^\alpha) - \varphi(\eta_j^*\xi_j^\beta)|^2 < \varepsilon,$$

take the limit over β and limit as $k \to +\infty$.

Property 2 - continuation

Finally

$$\sum_{j=1}^k |\varphi(\eta_j^*\xi_j^\alpha) - \varphi(\eta_j^*\xi_j^\beta)|^2 \leq \sum_{j=1}^{+\infty} |\varphi(\eta_j^*\xi_j^\alpha) - \varphi(\eta_j^*\xi_j^\beta)|^2 < \varepsilon,$$

take the limit over β and limit as $k \to +\infty$.

The ball in $l^2(A)$ is (a) dense in the ball in $l^2(A)'$

$$\xi_1, \xi_2, \ldots, \xi_n, 0, 0, \ldots) = x_n \rightarrow x = (\xi_1, \ldots) \in l^2(A)'.$$

ndeed, by normality of φ we have

$$p_{\varphi,y}(x-x_n)^2 \leq \varphi(\langle x-x_n,x-x_n \rangle) = \varphi\left(\sum_{j=n}^{+\infty} \xi_j^* \xi_j\right) o 0,$$

as $n \to +\infty$.

Properties 3 & 4

3 Restricted to A^n (forget all after *n*-th entry) $\tau_1 = \tau$.

Properties 3 & 4

Restricted to A^n (forget all after *n*-th entry) $\tau_1 = \tau$. 3 $p_{arphi, y}(x) = \left(\sum_{j=1}^n |arphi(\eta_j^*\xi_j)|^2
ight)^{rac{1}{2}} \leq$ $\leq \sum_{j=1}^n |arphi(\eta_j^*\xi_j)| = \sum_{j=1}^n |arphi(\langle z_j,x
angle)|,$ where $z_i = (0, \ldots, 0, \eta_i, 0, \ldots, 0)$.

 $\tau \subset \tau_1$

Properties 3 & 4

Restricted to A^n (forget all after *n*-th entry) $\tau_1 = \tau$. 3 $\tau \subset \tau_1$ $p_{\varphi,y}(x) = \left(\sum_{i=1}^{n} |\varphi(\eta_j^* \xi_j)|^2\right)^{\overline{2}} \leq 1$ $\leq \sum_{j=1}^n |arphi(\eta_j^*\xi_j)| = \sum_{j=1}^n |arphi(\langle \mathsf{z}_j, \mathsf{x}
angle)|,$ where $z_i = (0, \ldots, 0, \eta_i, 0, \ldots, 0)$. 4 The unit ball in A^n is compact in τ , hence totally bounded (A^n is selfdual).

Follows easily from the previous.

Property 5

5 The unit ball in $I^2(A)$ is not totally bounded in τ .

Property 5

5 The unit ball in $I^2(A)$ is not totally bounded in τ .

There is a totally discrete sequence.

Choose $\eta_j = 1$ for all j and φ arbitrary. Then $p_{\varphi,y}(e_n - e_m) = \sqrt{2}$.

"Compact" \Rightarrow compact Proposition T is "compact" \Rightarrow A is compact (i.e. maps bounded into totally bounded sets).

"Compact" \Rightarrow compact T is "compact" \Rightarrow A is compact (i.e. maps bounded into totally Proposition bounded sets). Proof Observe the following three facts: Projections $P_n: l^2(A) \to l^2(A)$, 1 $P_n(\xi_1,\ldots,\xi_n,\xi_{n+1},\ldots) = (\xi_1,\ldots,\xi_n,0,\ldots)$ make an approximate identity in the algebra of "compact" operators; The property of being compact is A linear; 2 The property of being compact is stable under limits, either uniform, or 3 in τ .

"Compact" \Rightarrow compact T is "compact" \Rightarrow A is compact (i.e. maps bounded into totally Proposition bounded sets). Proof Observe the following three facts: Projections $P_n: I^2(A) \to I^2(A)$, 1 $P_n(\xi_1,\ldots,\xi_n,\xi_{n+1},\ldots) = (\xi_1,\ldots,\xi_n,0,\ldots)$ make an approximate identity in the algebra of "compact" operators; The property of being compact is A linear; 2 The property of being compact is stable under limits, either uniform, or 3 in τ . The first of them is well known. The last two are easy to derive.

"Compact" \Rightarrow compact – continuation

Reduce to rank 1 By 2 and 3, it suffices to consider $x \mapsto \Theta_{y,z}(x) = z \langle y, x \rangle$.

"Compact" \Rightarrow compact – continuation

Reduce to rank 1 By 2 and 3, it suffices to consider $x \mapsto \Theta_{y,z}(x) = z \langle y, x \rangle$.

 $\operatorname{ran} \Theta \subseteq A^n$ If $z = e_j \zeta$, $\zeta \in A$, we have compactness of the unit ball in A^n .

"Compact" \Rightarrow compact – continuation

Reduce to rank 1By 2 and 3, it suffices to consider $x \mapsto \Theta_{y,z}(x) = z \langle y, x \rangle$.ran $\Theta \subseteq A^n$ If $z = e_j \zeta$, $\zeta \in \mathcal{A}$, we have compactness of the unit ball in A^n .Appr. by basisOtherwise, if $z = (\zeta_1, \zeta_2, \dots)$. Then $z = \sum_{j=1}^{+\infty} e_j \zeta_j$ (conv. in the norm). Since $||\Theta_{y,z} - \Theta_{y,z'}|| \le ||y|| ||z - z'||$, we have

$$\Theta_{y,z} = \lim_{n \to +\infty} \sum_{j=1}^n \Theta_{y,e_j\zeta_j}.$$

Compact \Rightarrow "compact" – a partial result

Proposition If A = B(H) the converse is true: If T is compact then T is "compact".

	Compact \Rightarrow "compact" – a partial result
Proposition	If $A = B(H)$ the converse is true: If T is compact then T is "compact".
Proof (idea)	The proof is carried out as follows: For T not "compact" construct a totally discrete sequence in the image of the unit ball. The proof is highly technical (many indices, ε 's etc.) – hence omitted. The following Lemma plays the key roll.

	Compact \Rightarrow "compact" – a partial result
Proposition	If $A = B(H)$ the converse is true: If T is compact then T is "compact".
Proof (idea)	The proof is carried out as follows: For T not "compact" construct a totally discrete sequence in the image of the unit ball. The proof is highly technical (many indices, ε 's etc.) – hence omitted. The following Lemma plays the key roll.
The Lemma	Let $a_n \in B(H)$ be a sequence of positive operators, such that $ a_n > \delta$. Then there is a normal state φ , and unitaries v_n , ν_n such that $\varphi(v_n^*a_n\nu_n) > \delta$.

A counterexample

For A commutative

Let $p_j \in A$ be mutually orthogonal nontrivial projections. Then $\mathcal{T}: l^2(\mathcal{A}) o l^2(\mathcal{A}),$

$$Tx = T(\xi_1, \xi_2, \dots) = (p_1\xi_1, p_2\xi_2, \dots)$$

is compact, but not "compact"

A counterexample

For A commutative Let $p_i \in A$ be mutually orthogonal nontrivial projections. Then $T: l^2(A) \to l^2(A).$ $Tx = T(\xi_1, \xi_2, \dots) = (p_1\xi_1, p_2\xi_2, \dots)$ is compact, but not "compact" To see T is not "compact" observe that $||T - P_n T|| = 1$ contradicting **Proof (outline)** P_n is an approximate identity. To see T is compact, note for any seminorm $p(T - P_n T) \rightarrow 0$. This preserves compactness.

A counterexample

For A commutative Let $p_i \in A$ be mutually orthogonal nontrivial projections. Then $T: l^2(A) \to l^2(A).$ $Tx = T(\xi_1, \xi_2, \dots) = (p_1\xi_1, p_2\xi_2, \dots)$ is compact, but not "compact" To see T is not "compact" observe that $||T - P_n T|| = 1$ contradicting **Proof (outline)** P_n is an approximate identity. To see T is compact, note for any seminorm $p(T - P_n T) \rightarrow 0$. This preserves compactness. Also the sequence p_n contradicts the Lemma.

Problems for further work

Problem 1 Describe W^* -algebras for which the Lemma is true. We suspect it is valid for factors.

Problems for further work

- **Problem 1** Describe W^* -algebras for which the Lemma is true. We suspect it is valid for factors.
- **Problem 2** Extend the presented results to modules over C^* -algebras using their enveloping W^* -algebras. For A C^* -algebra, its W^* -envelope is its second dual A^{**} which appears to be isomorphic to the bicommutant $\pi(A)''$, where π is the universal representation.

Problems for further work

- **Problem 1** Describe W^* -algebras for which the Lemma is true. We suspect it is valid for factors.
- **Problem 2** Extend the presented results to modules over C^* -algebras using their enveloping W^* -algebras. For A C^* -algebra, its W^* -envelope is its second dual A^{**} which appears to be isomorphic to the bicommutant $\pi(A)''$, where π is the universal representation.
- **Problem 3** Extend the presented results to any module over A (not only for $l^2(A)$, i.e. make seminorms independent of coordinates. It might be difficult.

Thanks for your attention

Complete proofs at https://arxiv.org/abs/1610.06956

Thanks for your attention

Complete proofs at https://arxiv.org/abs/1610.06956

To make it easier to remember:

- 1610 Henri IV of France assassinated by Ravaillac
 - 069 it is easy to remember. I guess?!
 - 56 due to previous students often get 5 and 6