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In this paper we gave further extension of the

best approximation theorems obtained by Ky

Fan, J. Prolla and A. Carbone. In our result

conditions of almost-affinity, quasi-convexity and

compactness are omitting.
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The theory of measures of non-compactness

has many applications in Topology, Functional

analysis and Operator theory. There are many

nonequivalent definitions of this notion on met-

ric and topological spaces. First of them was

introduced by Kuratowski in 1930. In this pa-

per we shall used definition of L. Pasicki.

L. Pasicki, On the measure of non-compactness,

Comment. Math. Prace Mat. 21 (1979),

203–205.
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Definition. Let X be a metric space. Mea-

sure of non-compactness on X is an arbitrary

function φ : P(X) → [0,∞] which satisfies fol-

lowing conditions:

1) φ(A) = 0 if and only if A is totally bounded

set;

2) from A ⊆ B follows φ(A) ≤ φ(B).

5) for each A ⊆ X and x ∈ X φ(A∪{x}) = φ(A).
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Theorem. (L. Pasicki) Let X be a complete

metric space and φ measure of non-compactness

on X. If {Bn}n∈N is a sequence of its nonempty

closed subsets such that:

1) Bn+1 ⊆ Bn for any n ∈ N ;

2) limn→∞ φ(Bn) = 0;

then K =
⋂

n∈N Bn is a nonempty, compact

set.
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The most important examples of measures of

non-compactness on a metric space (X, d) are:

1) Kuratowski’s measure

α(A) = inf{r > 0 :

A ⊆ ⋃n
i=1 Si, Si ⊆ X,diam(Si) < r,1 ≤ i ≤ n}

2) Hausdorff’s measure χ(A) = inf{ε > 0 : A

has a finite ε− net in X};

3) measure of Istratescu I(A) = inf{ε > 0 : A

contains no infinite ε− discrete set in A}.
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Relations between this functions are given by

following inequality, which are obtained by Danes:

χ(A) ≤ I(A) ≤ α(A) ≤ 2χ(A).

J.Danes, On the Istratescu’s measure of non-

compactness, Bull. Math. Soc. R. S. Roumanie

16 (64) (1972), 403–406.
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The famous Brouwer fixed point theorem (any

continuous function f : K → K has at least

one fixed point, where K ⊆ Rn is non-empty,

compact and convex set of Rn) for n = 3 was

proved by him in 1909; equivalent results were

established earlier by Henri Poincare in 1883

and P. Bohl in 1904. It was Hadamard who

in 1910 gave (using the Kronecker index) the

first proof for an arbitrary n. In 1912 Brouwer

gave another proof using the simplicial approx-

imation technique, and notions of degree. In

1927 Schauder obtained first infinite dimen-

sional generalization of Brouwer fixed point

theorem and gave its applications in the theory

of elliptic equations of Mathematical Physic.

In 1928 J. von Neumann by using Brouwer

theorem proved existence of solution of ma-

trix zero sums games.
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A short and simple proof of Brouwer theo-

rem was given in 1929 by Knaster, Kuratowski

and Mazurkiewicz. This proof is based on

one corollary of the Sperner’s lemma which

is known as KKM lemma. First infinite di-

mensional generalization of this statement (so

called KKM principle) was obtained by Ky Fan

in 1961. This statement, which is an infinite

dimensional generalization of classical KKM le-

mma, is known as KKM principle.

K. Fan, A generalization of Tychonoff’s fixed

point Theorem, Math. Ann. 142, (1961),

305–310.

Fixed point formulation of Fans result, which

is also very applicable, so-called Fan-Browders

theorem was obtained by Felix Browder in 1968.
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Let X and Y be non-empty sets; we denote

by 2X a family of all non-empty subsets of X,

F(X) a family of all non-empty finite subsets

of X and P(X) a family of all subsets of X.

A multi-function G from X into Y is a map

G : X → 2Y . If G : X → 2Y we define

G−1, G∗ : Y → P(X) and Gc : X → P(Y ) by

G−1(y) = {x ∈ X : y ∈ G(x)}, G∗(y) = {x ∈ X :

y 6∈ G(x)} and Gc(x) = Y \G(x).

10



Definition. Let C be a nonempty subset of a

topological vector space X. A map G : C → 2X

is called KKM map if for every D ∈ F(C) we

have

conv(D) ⊆
⋃

x∈D

G(x).
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Next statement is Ky Fan’s KKM principle.

Theorem. Let X be a topological vector space,

K be a nonempty subset of X and G : K → 2X

a KKM map with closed values. If G(x) is com-

pact for at least one x ∈ K then
⋂

x∈K
G(x) 6= ∅.
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Definition. Let E a metric linear space, φ

measure of non-compactness on E, and X ⊆ E.

A multi-function G : X → 2E is condensing

multi-function if for every ε > 0 there exist

n ∈ N and x1, ..., xn ∈ X such that

φ(G(x1)
⋂

...
⋂

G(xn)) < ε.

A condensing multi function G : X → 2E is

condensing KKM multi-function if it is KKM

multi-function.
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The following result, generalize recent results

of C. Horvath.

C. Horvath, Point fixes et coincidences pour les

applications multivoques sans convexité, C.R.

Acad. Sci. Paris, Serie I 296 (1983), 403–406.

C. Horvath, Measure of Non-compactness and

Multivalued Mappings in Complete Metric Topo-

logical Vector Space, J. Math. Anal. Appl,

108(1985), 403–408.

Theorem. Let E be a complete metric linear

space, φ measure of non-compactness on E,

X ∈ 2E and let G : X → 2E be a condensing

KKM multi-function. If G(x) is a closed set for

each x ∈ X, then
⋂

x∈X G(x) is non-empty and

compact set.
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Lemma. (*) Let E be a topological space

space, and G : X −→ 2X be a multi-function.

If:

1) x ∈ G(x) for each x ∈ X;

2) G∗−1(x) is a convex set for each x ∈ X;

G is a KKM multifunction.
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We prove that: if G is not KKM multi-function,

then G∗ has a fixed point. If G is not KKM

multi-function, than there exists a finite sub-

set {x1, ..., xn} ∈ F(X) and x0 ∈ X such that

x0 ∈ conv({x1, ..., xn}) and x0 6∈ ⋃n
i=1 G(xi).

This implies x0 ∈
⋂n

i=1 G∗(xi) and hence xi ∈
G∗−1(x0) for 1 ≤ i ≤ n. Since G∗−1(x0) is a

convex set, we have

conv({x1, ..., xn}) ⊆ G∗−1(x0), and so x0 ∈ G∗(x0).
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Corollary. (*) Let E be a topological vector

space, and G : X −→ 2X be a multi-function,

such that G∗−1(x) is convex set for any x ∈ X.

Then the following statements are equivalent:

1) x ∈ G(x) for any x ∈ X;

2) G is KKM multi-function.

2) follows 1) by lemma (*). If G KKM multi-

function, then for each x we have H({x}) ⊆
G(x), which implies x ∈ G(x) for any x ∈ X.
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Replacement of G∗ with G in Corollary (*) im-

plies

Corollary. (**) Let E be a topological vector

space, and G : X −→ 2X be a multi-function,

such that G−1(x) is convex set for any x ∈ X.

Then the following statements are equivalent:

1) x ∈ G(x) za neko x ∈ X;

2) G∗ is not KKM multi-function.
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Lemma. (**) Let E be a complete metric

linear space, φ measure of non-compactness

on E and X ∈ 2E convex set, and let T : X −→
P(X) be multi-functions such that:

1) for each x ∈ X, T (x) is nonempty and con-

vex set;

2) for each y ∈ X, T−1(y) is open set;

3) for each t > 0 there exists x ∈ X such that

φ(T−1∗(x) < t;

then T has a fixed point.
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We shall proved that T−1 has a fixed point.

By Lemma (*) for G = T−1∗ we need only to

show that G is not KKM multi-function and

set G∗−1(y) is convex for each y ∈ X (then

statement x ∈ G(x) is not true for each x ∈ X,

which implies that there exists x0 ∈ X such

that x0 ∈ G∗(x0) = T−1(x0)). 2) is satisfied

because G∗−1(y) = T (y) for any y ∈ X. If

G is KKM multi-function, then by Lemma (*)⋂
x∈X G(x) 6= ∅ because G(x) are closed (which

implies compact) set for for each x ∈ X. Hence

we obtained
⋃

x∈X G∗(x) 6= X, which is contra-

diction, because by 1) we have that T (x) 6= ∅
for any x ∈ X.
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In this talk we present the following fixed point

result for multi-functions, which generalize fa-

mous Fan - Browders theorem for metrizable

spaces.

Theorem. Let E be a complete metric linear

space, φ measure of non-compactness on E

and X ∈ 2E convex set, and let S, T : X −→
P(X) be two multi-functions such that:

1) S(x) is nonempty set and S(x) ⊆ T (x) for

each x ∈ X;

2) T (x) is convex set for each x ∈ X;

3) S−1(y) is open set for each y ∈ X.

If for any t > 0 there exists xt ∈ X such that

φ(S−1∗(xt)) < t, then T has a fixed point.
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Its enough to prove that T−1 has a fixed point.⋂
y∈X S−1∗(y) = ∅ because S(x) 6= ∅ for any x ∈

X. For each y ∈ X S−1∗(y) is closed set, which

implies that S−1∗ is not KKM multi-function.

By Corollary (**) we obtained that T−1∗ is

not KKM multi-function, because T−1∗(x) ⊆
S−1∗(x) za sve x ∈ X. By 1) we have that for

each x ∈ X set (T−1∗)−1∗(x) = T (x) is convex,

which implies, by Lemma (*), that there exists

x ∈ X such that x ∈ (T−1∗)∗(x) = T−1(x).
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In 1930’s, earlier works of Nikodym, Mazur,

Schauder initiated the abstract aproach to prob-

lems in calculus of variations. For further de-

velopment of this theory the most important

results are existence of solutions of the non-

linear variational inequalities obtained by Hart-

man and Stamppacia in 1966 and minimax in-

equality presented by Ky Fan in 1972. Its result

has been used ina large variety of problems in

nonlinear analysis, convex analysis, partial dif-

ferential equations, mechanics, physics, opti-

mization and control theory.

As application we obtained following variational

inequality which generalizes famous results of

of Yen and Ky Fan for metrizable spaces.

23



Corollary. Let E be a complete metric linear
space, φ measure of non-compactness on E

and X ∈ 2E convex set, and let p, q : X2 → R
be two real functions such that:

1) p(x, y) ≤ q(x, y) for all x, y ∈ X;

2) function x −→ q(x, y) is quasi concave on X

for each y ∈ X;

3) function y −→ p(x, y) is lower semi continu-
ous for each x ∈ X;

4) for any t > 0 there exists xt ∈ X such that

φ({y ∈ X : p(xt, y) ≤ sup
x∈X

q(x, x)}) < t.

Then there exists ŷ ∈ X such that:

sup
x∈X

p(x, ŷ) ≤ sup
x∈X

q(x, x).
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Let λ = supx∈Xq(x, x) and let S, T : C −→ P(X)
be two set-valued maps defined by:

S(y) = {x ∈ X : p(x, y) > λ},

T (x) = {y ∈ X : q(x, y) > λ}.

By assumptions we get that:

a) T has not a fixed point;

b) S(y) ⊆ T (y) for any y ∈ X;

c) for each y ∈ X, T (y) is convex set;

d) for each x ∈ X, S−1(x) = {y ∈ X : h(x, y) >

λ} is open subset of X;

e) for each t > 0 there exists xt ∈ X such that
φ(S−1∗(xt)) < t.

From Theorem, it follows, that there exists ŷ ∈
X such that S(ŷ) = ∅, which imlies p(x, ŷ) ≤ λ}
for any x ∈ X.
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