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During the Second Word War C.E.Shannon
invented a graph theoretical procedure for solving
systems of linear algebraic equations as an aid in
designing weapon control systems. This technique
was for some time a military secret but became
later known as signal flow graph technique, nowa-
days widely used by electrical engineers in control
theory.
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Mason’s formula

S.J.Mason, 1953
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These facts, together with several results in
combinatorial matrix theory, theory of graph
spectra, theory of sparse matrices and theoretical
chemistry have led to a combinatorial approach to
classical elementary matrix theory. This approach
is described in the book just published:

Brualdi R.A., Cvetković D.,

A Combinatorial Approach to Matrix Theory and Its

Application,

CRC Press, Boca Raton, 2008.

We present basic ideas of this book.



Previous books:

• R. A. Brualdi, H. J. Ryser, Combinatorial

Matrix Theory, Cambridge University Press,
Cambridge, 1991; reprinted 1992.

• D. Cvetković, Combinatorial Matrix Theory,

with Applications to Electrical Engineering,

Chemistry and Physics, (in Serbian), Naučna
knjiga, Beograd, 1980; II edition 1987.



empty scheme




2 2 2

2 2 2

2 2 2







empty scheme matrix




2 2 2

2 2 2

2 2 2





f
−→





a11 a12 a13

a21 a22 a23

a31 a32 a33







empty scheme matrix




2 2 2

2 2 2

2 2 2





f
−→





a11 a12 a13

a21 a22 a23

a31 a32 a33





digraph

1

2 3



empty scheme matrix




2 2 2

2 2 2

2 2 2





f
−→





a11 a12 a13

a21 a22 a23

a31 a32 a33





digraph weighted digraph

1

2 3

f
−→

1

2 3

a12

a21 a13

a31

a23

a32

a11

a22 a33



Let A = [aij ] be a square matrix of order n.
The determinant of A is the number detA defined
by the sum

det A = (−1)n
∑

L∈L(A)

(−1)c(L)w(L)

where the summation extends over all linear
subdigraphs L of the digraph D∗(A).
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Effect of transposition
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EXAMPLES: A definition and a theorem

Standard definition. A square matrix A is re-

ducible if there is a permutation matrix P such that

(1) PAPT =

[

X Y

O Z

]

where X and Z are square matrices of order at least
1. The matrix A is irreducible provided the form (1)
cannot be achieved for any permutation matrix P .



EXAMPLES: A definition and a theorem

Standard definition. A square matrix A is re-

ducible if there is a permutation matrix P such that

(1) PAPT =

[

X Y

O Z

]

where X and Z are square matrices of order at least
1. The matrix A is irreducible provided the form (1)
cannot be achieved for any permutation matrix P .

New definition. A square matrix A is irreducible

if its digraph D(A) is strongly connected; otherwise,
A is reducible.



Theorem. Let A be a square matrix of order n.
Then A is nilpotent if the corresponding digraph
D(A) does not have any cycles; in this case, An = O.
A nonnegative square matrix A is nilpotent if and
only if the corresponding digraph D(A) does not
have any cycles.
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This book

• Includes a combinatorial argument for the
classical Cayley-Hamilton theorem and a
combinatorial proof of the Jordan canonical
form of a matrix;

• Describes several applications of matrices in
electrical engineering, physics, and chemistry.



Thank you for your attention.


