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Multidimensional Tauberian theorems for wavelet and

non-wavelet transforms, Notation

So(R™) € S(R") consists of functions with all the moments equal zero.
The space of highly localized function over H™!, denoted by S(H"™1),
consists of those ® € C>°(H"*1) for which
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for all ki, ko,/ € N and m e N".

The canonical topology of this space is defined in the standard way.
S(H™) is a closed subspace of S(R")&S[0, ), where S[0, 00) is the
restriction of elements from S(R) to the interval [0, 00). Therefore, S(H")
is a nuclear space.
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Multidimensional Tauberian theorems for wavelet and

non-wavelet transforms, Notation

Let E be a Banach space. The spaces of E-valued distributions are defined
as: D'(R" E) = Lp(D(R"), E) and S'(R", E) = Lp(S(R"), E). We will
also use the spaces S(R", E) = Lp(So(R"), E) and

S'(H™1L, E) = Lp(S(H"Y), E).

Let f be in one of these spaces of E-valued generalized functions and let ¢
be in the corresponding space of test functions; Then

(f, @) = (f(t), ¢(t)) € E . The Fourier transform of f € S'(R", E) is

defined in the usual way, i.e., <f(u),g@(u)> = (f(t),9(t)) , € SR .
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Weak-asymptotic behavior

Slowly varying function

A measurable real valued function, defined and positive on an interval of
the form (0, A] (resp. [A,0)), A > 0, is called slowly varying at the origin
(resp. at infinity) if

. L(ae) . L(an)
A (resP' mCTO) 1) '

Examples log? x + sin x, log log x. (Ve > 0, L(x) = o(x%))

L is slowly varying at the origin if and only if there exist measurable
functions u and w defined on some interval (0, B], u being bounded and
having a finite limit at 0 and w being continuous in [0, B] with w(0) =0,
such that

% w(t)

L(x) = exp (u(x) +/X tdt) , x€(0,B].
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Multidimensional Tauberian theorems for wavelet and
non-wavelet transforms, Weak-asymptotics

Boundedness

Let f € S'(R", E) and let L be slowly varying at the origin (resp. at
infinity). We say that f is weak-asymptotically bounded of degree o € R
at the point xo € R” (resp. at infinity) with respect to L in S'(R", E) if for
each test function ¢ € S(R")

sup IF (x0 + et), p(8)) ]| < o0 (1)

e<1 80‘1_(5)

(resp U ST MW ||<f(At),so(t>>||<oo> .

f(xo+¢et)=0(*L(c)) ase— 0" inS'(R",E) (2)
(resp. f(At) = O(A*L(N)) as A — oo inS'(R™E)) . (3)
/ 55
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Multidimensional Tauberian theorems for wavelet and
non-wavelet transforms, Weak-asymptotics

Definition of weak-asymptotics

Let f € S'(R", E) and let L be slowly varying at the origin (resp. at
infinity). We say that f has weak-asymptotic behavior of degree o € R at
the point xg € R” (resp. at infinity) with respect to L in S’(R", E) if there
exists g € S'(R", E) such that for each test function ¢ € S(R") the
following limit holds with respect to the norm of E

% (F (30 + 1) (1)) = (&(1), o(t)) € E (4)

lim
e—0t L

(resp. /\Ii_}mw%wﬁ()\t),(p(t))) .
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Multidimensional Tauberian theorems for wavelet and

non-wavelet transforms, weak-asymptotics

In such a case we write,
f(xo+et) ~e*L(e)g(t) ase — 0" in S'(R" E) (5)

(resp. f(At) ~ A\*L(N\)g(t) as A — oo in S'(R"E)) . (6)

Distributions having weak-asymptotic behavior at infinity are called
asymptotically homogeneous generalized functions.
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Multidimensional Tauberian theorems for wavelet and

non-wavelet transforms, Wavelet and non-vavelet
transforms

Avareaging transform
Let f € S'(R", E).
Mi(x,y) = (fxp)(x) €E, (xy) eH", (7)

the standard average of f with respect to to the test function ¢ € S(R").
Notice that Mf € C>°(H"*!, E).

Let ¢ € S(R") be so that jio(¢) = [z, #(t)dt = 1. The ¢—transform of f
is

Fof(x,y) = My(x,y) = (F(x + yt),6(t)) € E, (x,y) eH"" . (8)

v
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Multidimensional Tauberian theorems for wavelet and
non-wavelet transforms, Averageing transforms

Wavelet transform

Let ¢» € S(R") be so that uo(¢)) = [gn t(t)dt =0, we then call ¢ a
wavelet. The wavelet transform of f with respect to v is defined by

Wyf(x,y) = Mi(x,y) = (f(x+yt),0(t)) €E, (x,y)€ H™L . (9)

n —jul—L

Take 1 given in the Fourier side by ¥(u) = e lul Wl u e R, it satisfies
all the requirements.

Let f € S'(R", E) and let ¢ € S(R"), then

lim Mf H(y) = wo(p)f ,  in S'(R"E) .

y—07t
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Multidimensional Tauberian theorems for wavelet and
non-wavelet transforms, Averageing transforms

Synthesis operator

Let ¢ € So(R™). We have that W, : So(R") — S(H™!) is a continuous
linear map . Let ® € S(H"*!) The wavelet synthesis operator with
respect to the wavelet 1 is

o 1 = dxd
qu’(t):/o /n¢(x,y)}7¢<tyx> );y, teR". (10)

My S(H™ 1) — So(R™) is continuous
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Multidimensional Tauberian theorems for wavelet and
non-wavelet transforms, Averageing transforms

One can consider (Sp)§ and the corresponding space S(H”H)g: and try to
develope the whole theory in this case....
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Wavelet Analysis on Sy(R", E)

If b admits the reconstruction wavelet 7, one has the reconstruction
formula for the wavelet transform on Sp(RR")

1
Tdgy(n = —— My Wy . (11)

P,n

(11)is extended to S{(IR") via duality arguments

|7 [ wefenetan ™2 = (0. M50 ()

valid for ® € S(H"*1) and f € S{(R™).
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Wavelet Analysis on Sy(R", E)

Theorem

Let ¢ € So(R") be non-degenerate and let 7 € Sp(R") be a reconstruction
wavelet for it. Then, we have the inversion formula

1
IdSé(R",E) e %anzp . (12)

Furthermore, we have the desingularization formula,

e pte) = o [ Wkey e (13

for all f € SH(R", E) and p € So(R").
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Wavelet Analysis on Sj(R”, E), Abelian Theorems

Abelian theorem

Let L be slowly varying at the origin (resp. at infinity) and let

f € S'(R", E) be weak-asymptotically bounded of degree « at the point xg
(resp. at infinity) with respect to L in S'(R", E). Then, there exist

k,l €N, C >0 and gy > 0 (resp. Ao > 1) such that for all (x,y) € H"+?

HI\/I;(XO + 5x,5y)” < Ce%L(e) ()1/ +y)k (1+|x]) , 0<e<er (14)

(resp. HM;(AX, )\y)H < CAOL(N) (% —i—y)k A+ 1x) . Ao <A ) .
(15)

v
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Wavelet Analysis on Sj(R”, E), Abelian Theorems

Abelian theorem

Let

Cov = {(x,y) e H™ : |x — x| < (tan ﬂ)y} 9/ geqO.
So, Cxo,ﬁ = (Xo, 0) T Co,g. Let f € SI(R", E)

f(xo +et) ~e*L(e)g(t) ase — 0" in S'(R", E)

(resp. f(At) ~ A*L(A)g(t) as A — oo in S'(R",E)) .
Then, if 0 <9 < 7/2,

1
lim  |(x,y)]”“ - M xo + x,y) — M8 x,yH:O 16
corinton || TG Mot xoy) = Meboy)] =0 (20)
(x.y)€Go,0

v
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Wavelet Analysis on Sj(R”, E), Abelian Theorems

1
resp. lim |(x,y)]™ —Mf(Xoer,y)—Mg(X,y)H=0 :
(e =cs L(I(x,y)]) * v
(X7y)€C0,'t9

in particular, for each fixed point (x,y) € H"*1,

. f . .
im, SO‘L—(S)M“’(XO +ex,ey) = ME(x,y) inE (17)

(resp I|_)mOo )\O‘L()\) — M H(Ax, Ay) = Mg(x,y)) . (18)

Furthermore, an estimate of the form (14) (resp. (15)) holds.
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Example

Point values of distributions

An important special case of weak-asymptotic behavior is the value of
distributions at a point in the sense of tojasiewicz, which is obtained when
a =0and L = 1. A distribution f is said to have a (distributional) point
value at xp in the sense of tojasiewicz if

. _ . /
Ell_% f(xo+ex) =~ inD'(R).

(Novi Sad) - / 55



Construction of distributions with no point values in the sense of

tojasiewicz

Let {\,}72, be a lacunary sequence with A\pi1/A, >0 > 1. Let

f € S'(R) have a series representation f(x) = > oo c,e’*™*, where the
series is convergent in §’(R). Furthermore, suppose that at a given xp the
point value f(xp) exists in the sense of tojasiewicz. Then, by selecting

¥ € Sp(R) with supp w Clo~ 2 02] and ¢)(1) = 1, the lacunarity of
{An}nen, implies

qu XO; ZC el)\nxow< ) = ¢, el/\mXO,
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So, the existence of the distributional point value f(xp) and Abelian
theorem (with o = 0, L = 1,W,,1(0,1) = 0) imply that cpe* ™ = o(1),
or,

lim ¢m=0. (19)

m—00
Therefore, (19) is a necessary condition for the existence of the
distributional point value of f at xg. On the other hand, we have just
shown: If (19) is violated, then f cannot have distributional point values
anywhere. The same argument we can apply to distributions of the form

>0 g €ncos(Anx) and D07 o cpsin(Anx).
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A stronger conclusion than the usual nowhere differentiability for

Weierstrass's function

We observe the Weierstrass function
o
w(x) =Y 7 "cos(8%), B=v>1
n=0

and its first derivative
, B o B n . .,
w'(x) = — g — | sin(5"x).
Y
n=0

Since (8/v)" # o(1), it follows from previous Example that w'(xg) does
not exist in the sense of tojasiewicz at any xg € R. In particular, w is
nowhere differentiable.
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Wavelet Tauberian Characterization of Quasiasymptotics
in S§(R", E)

Let f € S'(R", E), » € S(R"), and let L be slowly varying at the origin

(resp. at infinity). Then,

k
. Y f
lim sup sup )M (xo +8x,5y)H < 0 (20)
e—0+ |x|2+y2:1,y>0 5aL(5) ®»
vk f
resp. limsup sup HI\/I (Ax, )\y)H <oo| . (21)
A—00 |X|2—|—y2=1,y>0 )‘aL()‘) v

implies an estimate of the form (14) (resp. (15)).
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Wavelet Tauberian Characterization of weak-asymptotics

in S§(R", E)

Let f € S'(R", E), 1) € So(R"), and let L be slowly varying at the origin
(resp. at infinity). Assume that the wavelet v is non-degenerate. Then,
the existence of the limits

———Wyf(xo +ex,ey) = Wy, , foreach (x,y) € H NS,
(22)

<resp I|m )\aL()\)Wwf(AX JAy) =W, € E> (23)

'
0 2o L(2)

and the existence of kK € N such that
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Wavelet Tauberian Characterization of weak-asymptotics

in S§(R", E)

k
lim sup sup ayi Wy (x0 + ex,ey)|| < oo (24)
=0t [ y2=1,y>0 S*L(E)

Yk
(resp. lim sup sup )\O‘L [Wef (Ax, Ay)|| < OO) , (25)
A—=00  |x[24y2=1, y>0 ( )

are necessary and sufficient for f to have weak-asymptotic behavior in the
space S()(]R”, E), namely, the existence of an E-valued distribution
g € S'(R", E) such that

f(xo +et) ~ e¥L(e)g(t) ase— 0T in SH(R", E) (26)

(resp. f(At) ~ A*L(N\)g(t) as A — oo in Sy(R",E)) . (27)

In such a case, the restriction of g to Sp(R") is uniquely determined by
W¢g(X,y) = WX,}/'

(Novi Sad)




Tauberian theorems for vector-valued distribution

Theorem

Let f € S'(R",C"(K)), let ¢» € S(R") be a non-degenerate wavelet, and
let L be slowly varying at the origin. Suppose that there exists k € N such
that

k
lim sup sup % | Wyf (t +ex,ey) ller(k)< oo. (28)
£0% |x2y2=1, y>0 € L(E)

Condition (28) is necessary and sufficient for:
(1) If & ¢ N, there exists a polynomial P; with values in C"(K) such that
f — P is weak-asymptotically bounded of degree o with values in C"(K)
with respect to L in the space S'(R",C"(K)).
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Tauberian theorems for weak-asymptotic boundedness of

vector-valued distribution

(i) If &« = k € N, there exist a polynomial P; with values in C"(K) and
asymptotically homogeneously bounded functions ¢, |m| = k, with values
in C"(K), of degree 0 with respect to L such that f has the following
asymptotic expansion

F(t+ex) = Pe(ex) +e6 3 x"em(t ) + O (ekL(s))

|m|=k

as € — 0™ in the space §’'(R",C"(K)).
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Characterizations of Holder functions through the wavelet
transform

Let f € S'(R), a € (0,1), I = (A, B), and let L be a slowly varying
function at 0 which is bounded on compact subsets of R;. Let f € §'(R)

be such that

Wyf(b,a)| = o(|a|“L(a)), asa—0,

uniformly when b remains in compact subsets of /. Then, for every closed
subinterval I’ = [A’, B'] C R there holds

|f(t+ h)— f(t)] = o(h*L(h)), as h— 0" uniformlyinte /.
In particular, there exists M, such that

F(t+h) — F(t)] < Mi[h|*L([A]), t,t+hel,
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Characterizations of Holder functions through the wavelet
transform

Let « € (0,1), I = (A, B), and let L be a slowly varying function at 0
which is bounded on compact subsets of R;. Let f € S’(R) satisfy

sup [Wyf(t+ b, a)| = o(|b|*L(|b])), as |b| = 0, uniformly in0<a<1.

tel
(29)
Then, for any compact subinterval I’ C I, there holds

|f(t + h) — f(t)| = o(h“L(h)) , as h— 0T uniformly int € /. (30)
In particular, there exists M, such that

|F(t+ h) — F(t)| < My|h|*L(|h]), t,t+hel, (31)

where M > 0 does not depend on t and h.

v




Applications to local analysis of distributions

Let f € S'(R", E). Using conditions
||If(ex)||e = O(e®L(¢)), e = 0 and (32)

[IFAX)lle = OV L(A)), A = o0, (33)

where L is slowly varying at zero and at infinity, we have the next
definition related to Meyer spaces:

Definition

f e O2b resp, f e 25 if and only if conditions (32) and (33) hold in the
sense of convergence in S'(R”, E), resp., S{(R", E).

fc (’)Z—’L, resp., f € Fi-’L if and only if condition (32) holds in the sense of
convergence in S’(R”, E), resp., S{(R", E).
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Applications to local analysis of distributions

Let K be a compact set of R” (K CC R"). The cases when
E = (C(K), I - lloc), where [[f[[cc = supeex [f(2)] and

t—f(t+-) e L(K,S(R")) or t — f(t+-) € L(K,So(R")),

are of special interest and we devote a paper to these cases.
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Applications to local analysis of distributions

Let f € S’'(R"). Then

f e O°(K)if sup|f(t+ex)=0(c°),e =0, in S'(R"); (34)
tek

f e I°(K) if sup|f(t+ex)| = O(c°),e — 0, in S§(R"); (35)
tek

v

We reformulate Boni's definition of Cg’s, in the general case and in the
case when E = (C(K), || - ||s0):
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Applications to local analysis of distributions

(i) Let f € S'(R", E). Then f € 8,55’5/ R") if the following conditions hold
in S'(R", E) :

(a) [If % e(X)lle < Co(L + )%, x € R,

(b) [If*ve(x)|e < Ce*(1+ |x]/2)™, x e R", e € (0, 1),
where ¢ € S(R)" is a mollifier and ¢ € Sp(R)" is a wavelet.
(ii) Let f € S/(R"). Then f € C>%(K) if

(@) sup|fxp(t+x)| < Gl +]|x|)"%, x e R,
teK

(b) sup|f *¥.(t + x)| < Ce5(1 + |x|/e)™, x e R", ¢ € (0, 1),
teK
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Applications to local analysis of distributions

Corollary

Let s € (0,1], / = (A,B), K =[A,B] and f € C>5(K). Then f is of the
Holder class s on every compact subinterval of /.

The similar conclusion can be derived for elements of O°(/) with the
condition s € (0,1]. Moreover, analogous results hold in the
n—dimensional case. )
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Applications to local analysis of distributions

If K={xo}, L =1, then earlier definition reduces to the definitions of the
known spaces O°,[* and (by translation) O°(xp), *(xo). Alsoone obtains
Boni's definition of C5°, taking K = {xo}.

We note that our Tauberian theorems give another approach to quoted
spaces of Mayer and Boni. Moreover, we have more precis extension
theorems for distributions defined on R" \ {0} since we have considered
also associate asymptoticaly homogeneous functions
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Lambert summability

Let {cn}re be sequence of complex numbers. Recall, Y77 ¢, is said to
be Lambert summable to 3 if

o0 o0
yn . yn
ng_o Cn o1 converges for y > 0, and ylﬁ8+ ng_o Cn o1 5.

n=0

Assume that {c,,}iozo is of slow growth, i.e., there is m € N such that
cn = O(n™). Then, f(t) = 0%, c,e’™ defines a periodic distribution
over the real line. Let n € S(R) be a test function such that

n(u) = u/(e" — 1), for u > 0. set ¢(t) = (1/2m)7j(t); thus, the
¢—transform of f is precisely
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Lambert summability

1 A yu > ; yn
F¢f(x’y) = o <elxuf(u)’ evu — 1> = chelxneyn 1
n=0

Set ¢(t) = (1/27)7)(t); thus, the p—transform of f is precisely
1 1, x—1t s : yn
Fof(x,y) = — ( £(t), =7 =3 cpei .
) = 5o (102007 > e

Consequently, (36) is equivalent to an statement on the boundary behavior
of the ¢—transform

lim Fyf(0,y) = 5. (37)
y—0*t
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Laplace transforms as ¢—transforms

Let I be a closed convex acute cone with vertex at the origin. Its conjugate
cone is denoted by ™. T'* has non-empty interior; set Cr = int[™* and

T¢ =R+ iCr. We denote by S/(E) the subspace of E-valued tempered
distributions supported by I'. Given h € S[(E), its Laplace transform is

Lih;z} = (h(u),e?"), ze T,

It is a holomorphic function on the tube domain T . Fix w € Cr. We
may write £ {h; x + iow}, x € R", ¢ > 0, as a ¢—transform. In fact,
choose 7, € S(R") such that n,(u) = e ¥, u €T, then, with

¢ = 1/(27)"7), and f = (27)"h,

L{h;x+iow} = Fy f(x,0). (38)
<h(u)7ei2-u> _ <h(u)7ei(x+iaw).u>
- (1.0 S

(Novi Sad)
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Tauberian Theorems for Laplace Transforms

Littlewood’s Tauberian theorem. The classical Tauberian theorem of
Littlewood states that if

e—07t

lim Z e "=p (39)
=0

and if the Tauberian hypothesis ¢, = O(1/n) is satisfied, then the
numerical series is convergent, i.e., Zzio ch = p.
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Tauberian Theorems for Laplace Transforms

We give a quick proof of this theorem.
| h(u) = >"72 o cnd(u — n) has the quasiasymptotic behavior

h(Au) =Y " cb(Au — n) ~ 55&“) as A — oo in S'(R).  (40)
n=0

Il The convergence of the series can be established from (40).
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Pointwise Analysis of Riemann Type Distributions at the

Rationals

We investigate the pointwise weak-asymptotic expansion of the family of
Riemann distributions

o _imn?t
e
Rs(t) = W €S'(Ry), BeC,

n=1

at points of Q. We split QQ into two disjoint subsets Sp and S; where

w41 . 2 .
Sy = : 7 s U : 7
° { 2 VIS } {2v+1 e }

and
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Pointwise Analysis of Riemann Type Distributions at the

Rationals

When > 1/2, Rg is a continuous function. The imaginary part of Ry is
the classical Riemann “non-differentiable” function. It is well known that if
$ > 3/4, then Rg is differentiable at the points of S; and has local cusps
with differentiable remainder at points of Sp; for § € (1/2,5/4), Rg is not
differentiable at any irrational point, as shown essentially by Hardy and
Littlewood . Jaffard and Meyer showed that SmR; has trigonometric
chirps at the points of S;. We will exhibit more precise information
concerning the scaling weak-asymptotic properties of Rg at the rationals,
in fact, we will show that Rg admits a full weak-asymptotic series at
points of Q, no matter the value of 3.
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Pointwise Analysis of Riemann Type Distributions at the

Rationals

In particular, our analysis reveals that R3 has weak scaling exponent equal
to oo at points of S1; at points of Sy, it has infinite weak scaling exponent
after subtraction of an adequate term. To this end, we will be led to the
study of the analytic continuation of the zeta-type function
e ei7rrn2
() =) — Rez>1, (41)
n=1

where r € Q. If r =0, (41) reduces to (o = ¢, the familiar Riemann zeta
function.
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Pointwise Analysis of Riemann Type Distributions at the

Rationals

We now determine the weak-asymptotic expansion of Ry at 1. Observe
that Ro(1 + t) = 2Ro(4t) — Ro(t), thus the behavior at origin implies that

1
Ro(1+¢t) = -5+ o(e>®) ase — 0" in S'(Ry). (42)
We return to the general case. Consider the two complex transformations
Kz=z+1 and Uz=-1/z, forzeC,

they generate the well know modular group which leaves invariant the
upper half-plane and the real line. We are more interested in the theta

group, namely, the subgroup Gy of modular transformations generated by
K? and U.
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Pointwise Analysis of Riemann Type Distributions at the

Rationals

Then, one readily verifies that

Gﬂ-OZSO and G19-1251,
that is, Sp is the orbit of 0 under Gy while S; that of 1. Let ¢ be the
Jacobi theta function given by

o0
Hz):=1+ 22 ez Smz > 0.
n=1

We then have the following transformation laws
I(K?2) =9(z) and I(Uz) = V—iz ¥(2);

the first of them is completely obvious, while the second one follows easily
from the Poisson summation formula. Observe that ¥ admits a boundary

tempered distribution on the real line, which we also denote by ¥, or J(t).
(Novi Sad) -
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Pointwise Analysis of Riemann Type Distributions at the

Rationals

The ensuing lemma describes the scaling weak-asymptotic properties of Ry
at points of the orbit S; = Gy - 1.

Let r € Gy-1. Then, Ry € Cy°(r). Furthermore, at those points,
Ro(r) = —1/2 and Rém)(r) = 0, distributionally, for each m > 1.

We may rephrase Lemma 1 by saying that Ry + 1/2 € O°°(r) for each
re Gy-1.

Observe that Lemma 1 gives then the full weak-asymptotic expansion of
Ro at r = (2j+1)/(2v + 1), j,v € Z, namely,

1
Ro(r+et) = —5+ o(e®) ase— 07" in S'(Ry).
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Pointwise Analysis of Riemann Type Distributions at the
Rationals

Theorem

Let r € Gop-1. Then Rg € Cy°(r) for any B € C. Moreover, the Dirichlet

series
i rn?

W)= % — (0), zeC, (43)

n=1

defines an entire function in z, where the sums of series for e z < 1 are
taken in the Cesaro sense, and they are convergent on the closed
half-plane e z > 1. In particular, the tojasiewicz point values of the
derivatives of Rg at points of the orbit Gy - 1 are given by

RY™ (r) = (im)™¢(28 — 2m), distributionally, for all m € N. ~ (44)

v
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Pointwise Analysis of Riemann Type Distributions at the

Rationals

It is implicit in Theorem 2 that R admits a weak-asymptotic series at the
points of Gy - 1.

Let r € Gy -1. Then, for any 8 € C,

Rg (r +et) ~ Z W(ieﬂ)m ase — 07 in S'(Ry).
m=0 ’
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Pointwise Analysis of Riemann Type Distributions at the

Rationals

We now proceed to study the pointwise properties of Rg on the orbit
Gy - 0. As usual, we start with Ry.

Theorem

At any point r € Gy - 0, there exists a constant p, € C such that

Vi

Ro(t) — o

pr(t—r+i0)"2 +1/2 € O®(r).

Moreover, the constants p, are completely determined by the
transformation equations:

i
po=1 pye, =p,, and pyr = \/—; pr. (45)

/ 55
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Pointwise Analysis of Riemann Type Distributions at the

Rationals

Theorem 4 means that, at any point of the orbit Gy - 0, we have the
weak-asymptotic expansion

Ro(r+et) = ip,g 2(t+10) 3 —%—{—0(8 ) ase— 0" in S'(R;). (46)
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Pointwise Analysis of Riemann Type Distributions at the

Rationals

Depending on whether 3 =1/2 or 3 # 1/2, the distributions Rg will
behave differently on the orbit of O under the theta group. This fact is
intimately connected with the analytic continuation of ¢, for r € Gy - 0,
which is obtained in the next theorem.

Theorem

Let r € Gy -0. Then, ¢, admits an analytic continuation to C \ {1}.
Furthermore, (, has a simple pole at z =1 with residue p,, determined by
(45), and the entire function

A2) = Glz) - 2 (47)

can be expressed as the Cesaro limit

Ade) = lim D

(Novi Sad)
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Pointwise Analysis of Riemann Type Distributions at the

Rationals

We describe the pointwise behavior of Rz on Gy - 0. We define the

generalized gamma constant as ~y, := A,(1). Observe that in fact vo =7,

the familiar Euler gamma constant because (o = ( is the Riemann zeta
function.

(Novi Sad)

/ 55



Pointwise Analysis of Riemann Type Distributions at the
Rationals

Theorem

Let r € Gy - 0.
(i) If p e C\ {1/2}, then

(=im)P=2r (% - B)

Rg(r+et) ~ 5

p’(st+i0)5—%+z W(im

m=0

\H.l

ase — 07 in §'(Ry).
(i) When B =1/2, we have

Rl(r—l—st)wfy, Z( Iog< H) —sgnt— > ZC,I—Zm (1

ase — 07 in §'(Ry).
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Pointwise Analysis of Riemann Type Distributions at the

Rationals

We discuss some useful formulas which can be derived from our previous
analysis. The next corollary provides formulas for the constants p,.

Let r € Gy -0. Then

N
N T N
lim NZe' m :pr- (49)
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Pointwise Analysis of Riemann Type Distributions at the

Rationals

We now give a formula for ~,.

Corollary

Let r € Gy - 0. The series

9 ei7rrn2 —p,
1+iy 7
n

n=0

is convergent for any y € R. In particular,

0 ei7rrn2_pr_’-y -
- r r
n=0 n
or equivalently,
ei7rrn2
lim —p,log N = ~,.
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Pointwise Analysis of Riemann Type Distributions at the

Rationals

We state it in the following corollary.

Corollary
The series S o
9 )
% = g
n1+yi
n=1

is convergent for any j,v € 7Z and y € R.

The pointwise behavior of Ry can be used to calculate some Cesaro sums

and limits which apparently have not been given elsewhere before. That is
the context of the next corollary, whose proof is obtained immediately by

comparing Corollary 3 with Lemma 1 and the expansion from Theorem 6

with (46).
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Pointwise Analysis of Riemann Type Distributions at the
Rationals

Corollary
For any j,v € Z,

o0

Zn2m iTn 2f’j_1_0 (C) m:172737..-,

and

> 2 20+l 1
S e = -2 (C).
2
n=1
If r € Gy -0, then

Xll_)rr;o Z nz’"e"”"’2—p,/0 emde | =0 (C), m=1,2,3,...,

1<n<x
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