Conormal Lagrangian Floer homology for open subsets and PSS isomorphism

Jelena Katić, Darko Milinković and Jovana Nikolić,

University of Belgrade, Serbia

Morse homology

- M closed manifold
- $f: M \to \mathbb{R}$ Morse function
- Crit(f) \rightsquigarrow generators
- $\sharp \{ \gamma \mid \dot{\gamma} = -\nabla f \} \leadsto \text{ boundary operator } \partial_M \leadsto HM(f)$
- ullet canonical isomorphism $HM(f^{lpha})\cong HM(f^{eta})$
- $HM(f) \cong H^{\text{sing}}(M)$

Lagrangian Floer homology

- (P, ω) symplectic manifold
- $L_0, L_1 \subset P$ Lagrangian
- $L_0 \cap L_1 \leadsto \text{generators}$
- $\sharp\{\text{holomorphic strips } u, \text{ boundary conditions: } u(s,j) \in L_j\} \leadsto \text{boundary operator } \partial_F$
- Floer homology $HF(L_0, L_1)$
- $P = T^*M$, $L_0 = O_M$, $L_1 = \phi_H^1(O_M)$, there is a canonical isomorphism $HF(O_M, \phi_{H^{\alpha}}^1(O_M)) \cong HF(O_M, \phi_{H^{\beta}}^1(O_M))$
- Floer: for special choice of f and H, $HF(O_M, \phi_H^1(O_M)) \cong HM(f)$
- this isomorphism is not functorial w.r.t. canonical isomorphisms in Morse and Floer theory

PSS isomorphism

- Piunikhin Salamon Schwarz (1996), K. Milinković (2005), Albers (2008), Đuretić (2014)
- PSS is defined by a number of combined objects (γ, u) , where γ is a negative gradient trajectory (from ∂_M) and u is a holomorphic strip (from ∂_F)
- PSS is functorial:

$$\begin{array}{c|c} HM(f_{\alpha}) & \xrightarrow{S_{\alpha\beta}} & HM(f_{\beta}) \\ PSS_{\alpha} & PSS_{\beta} & \\ HF(O_{M}, \phi_{H_{\alpha}}^{1}(O_{M})) & \xrightarrow{T_{\alpha\beta}} & HF(O_{M}, \phi_{H_{\beta}}^{1}(O_{M})) \end{array}$$

commutes

Floer homology for submanifolds

- Pozniak (1994)
- $N \subset M$ closed sumbanifold; conormal bundle:

$$\nu^* \mathsf{N} := \{ \alpha \in \mathsf{T}^* \mathsf{M}|_{\mathsf{N}} \mid \alpha_{\mathsf{T} \mathsf{N}} = 0 \}$$

is always a Lagrangian submanifold

- Floer homology $HF(\nu^*N, \phi_H^1(O_M))$ is isomorphic to $H_{\text{sing}}(N)$
- also not functorial
- Duretić (2014): construction of PSS type isomorphism $HM(f, N) \stackrel{\cong}{\longrightarrow} HF(\nu^*N, \phi^1_H(O_M))$ which is functorial

Floer homology for open subsets

- Kasturirangan, Oh (2001)
- $U \subset M$ open, ∂U smooth
- $\nu_{-}^{*}(\partial U) := \{\alpha \in \nu^{*}(\partial U) \mid \alpha(\mathbf{n}) \leq 0\}$, for **n** outward normal to ∂U
- $u^*\overline{U} := O_U \cup \nu_-^*(\partial U)$ conormal to \overline{U}
- $\nu^*\overline{U}$ is not a smooth manifold
- ullet there are approximations Υ of $u^*\overline{U}$, Υ smooth Lagrangian
- $HF(\phi_H^1(O_U), \Upsilon)$
- there is a partial order on $\{\Upsilon^s\}$, and homomorphisms $F_{ab}: HF(\phi^1_H(O_U), \Upsilon^a) \to HF(\phi^1_H(O_U), \Upsilon^b)$ such that $F_{bc} \circ F_{ab} = F_{ac}$, for $\Upsilon^a \leq \Upsilon^b \leq \Upsilon^c$
- Floer homology as a direct limit $HF(U) := \lim_{\epsilon} HF(\phi_H^1(O_U), \Upsilon^{\epsilon})$
- $HF(U) \cong HM(f, U) \cong H^{sing}(M)$ for special f

PSS for open subset

- K. Milinković Nikolić
- f such that $Crit(t) \cap \partial U = \emptyset$, ∇f points outward ∂U (to avoid some analytical troubles)
- first step: PSS for approximations

$$PSS^{\Upsilon}: HM(f,U) \to HF(\phi_H^1(O_U), \Upsilon^s)$$

- second: PSS commutes with F_{ab} that defines direct limit \rightsquigarrow $PSS: HM(f,U) \rightarrow HF(U)$
- ullet functoriality: all PSS^{Υ} are functorial

Poincaré duality - Morse case

- cannot define the other way around PSS via number of (u, γ) for same f
- for -f instead of f $PSS : HF(U) \rightarrow HM(f, U)$ is well defined
- PD for Morse:

$$H_k^{\text{sing}}(U) \cong HM_k(f, U) \cong HM_{n-k}(-f, U) \cong H_{n-k}^{\text{sing}}(U, \partial U)$$

for f as above

Poincaré duality - Floer case

• instead of $\nu_{-}^{*}(\partial U)$ consider

$$\nu_+^*(\partial U) := \{ \alpha \in \nu^*(\partial U) \mid \alpha(\mathbf{n}) \ge 0 \}$$

- $\zeta: x = (q, p) \mapsto \overline{x} := (q, -p)$
- $\zeta(\nu_-^*\partial U) = \nu_-^*\overline{U}$
- Υ approximation of $\nu_-^*\overline{U}\Rightarrow\overline{\Upsilon}:=\zeta(\Upsilon)$ approximation of $\nu_+^*\overline{U}$
- $\overline{H}(x,t) := H(\zeta(x),t) \leadsto \phi_H^1(O_U) \cap \Upsilon \cong \phi_{\overline{H}}^1(O_U) \cap \overline{\Upsilon}$
- $\overline{J} := \zeta^* J \leadsto$ bijection of the spaces of holomorphic discs defining the boundary operation
- $\zeta_* : HF_k(\phi_H^1(O_U), \Upsilon : J) \xrightarrow{\cong} HF_{n-k}(\phi_{\overline{H}}^1(O_U), \overline{\Upsilon} : \overline{J})$
- $PD_{Floer} = \zeta_*$

PSS is isomorphism

If Ψ is defined by a number of (u, γ) , then

$$\begin{array}{ccc} HM_k(f,U) & \xrightarrow{PSS} & HF_k(\phi^1_H(O_U),\Upsilon) \\ & & \text{PD}_{\textit{Morse}} \middle| \cong & \text{PD}_{\textit{Floer}} \middle| \cong \\ & HM_{n-k}(-f,U) & \xrightarrow{\Psi} & HF_{n-k}(\phi^1_{\overline{H}}(O_U),\overline{\Upsilon}) \end{array}$$

commutes

⇒ PSS is isomorphism

Isomorphism for a direct limit

If PSS, PD_{Morse} , PD_{Floer} , Ψ all commute with homomorphisms defining a direct limits, then

$$\begin{array}{ccc} HM_k(f,U) & \xrightarrow{PSS} & HF_k(U) \\ & & \text{PD}_{\textit{Morse}} \Big| \cong & & \text{PD}_{\textit{Floer}} \Big| \cong \\ & & HM_{n-k}(-f,U) & \xrightarrow{\Psi} & HF_{n-k}(U,\overline{\Upsilon}) \end{array}$$

commutes

