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Algebras

Cr-algebra A Banach algebra with an involution such that
la*a|| = [|al[>.
Any C* algebra has a representation as a subalgebra of
B(H) for some Hilbert space H — Gelfand-Naimark
theorem.
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Algebras

A Banach algebra with an involution such that
[la*al| = [|al[?.

Any C* algebra has a representation as a subalgebra of
B(H) for some Hilbert space H — Gelfand-Naimark
theorem.

A C*-algebra that has a predual.
Such a predual is unique. lts elements are called normal.

W*-algebra has a strongly (or weakly, or ultraweakly,
etc.) closed representation.

C(K) is a C*-algebra, but not W*.
B(H) is a W*-algebra. B(H). = &;.
L%°(X; ) is a W*-algebra. L®(X; p)s = LY(X; ).



Hilbert C* modules

Hilbert A right module M over A with an A-valued inner
C*-module product such that
1 (a,a) >0, (a,a) =0« a=0;
2 (b,a) = (a,b)";
3 <a, b1 + b2)\2> = <a, b1> AL+ (a, b2> Ao.
Here, a, b, bj € M, \; € A.

A Hilbert C*-module need not to have a basis (as any
module).
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Standard
Hilbert module

Hilbert C* modules

A right module M over A with an A-valued inner
product such that

(a,a) >0, (a,a) =0 a=0;

(b,a) = (a, b)";

(a, b1 A1 + baA2) = (a, b1) A1 + (a, ba) Aa.

Here, a, b, bj e M, )\j c A.

A Hilbert C*-module need not to have a basis (as any
module).

P(A)={x=(&1.&,...) | § € ALY €

conv. in || - ||}

Standard Hilbert module over a unital algebra has a
(Riesz) basis ¢ = (0,0,...,1,0,...), 1 is the unit of A
placed on j-th entry.



” Compact”
operators on a
module M

" Compact” operators

Closed linear span of the operators ©, , : M — M,
Oy,z(x) =z (y,x).

Such operators need not to map bounded sets into
relatively compact. Hence the quotation marks.



” Compact”
operators on a
module M

Problem

" Compact” operators

Closed linear span of the operators ©, , : M — M,
Oy,z(x) =z (y,x).

Such operators need not to map bounded sets into
relatively compact. Hence the quotation marks.

Find a topology on /2(A) such that " compact”
operators map bounded into totally bounded sets.

If possible, prove the converse, if A maps bounded into
totally bounded sets then A is "compact”.



” Compact”
operators on a
module M

Problem

Result

" Compact” operators

Closed linear span of the operators ©, , : M — M,
Oy,z(x) =z (y,x).

Such operators need not to map bounded sets into
relatively compact. Hence the quotation marks.

Find a topology on /2(A) such that " compact”
operators map bounded into totally bounded sets.

If possible, prove the converse, if A maps bounded into
totally bounded sets then A is "compact”.

The first problem is solved. The second partially.



Locally convex spaces

A locally Determined by a family of seminorms p;, i € I.
convex space Seminorms gives rise to the family of semimetrics
di(x,y) = pi(x — y).
A locally convex space is a uniform space.



Locally convex spaces

A locally Determined by a family of seminorms p;, i € I.

convex space Seminorms gives rise to the family of semimetrics
di(x,y) = pi(x — y).
A locally convex space is a uniform space.
A set is totally bounded if it is totally bounded in all d;.
A net is a Cauchy net if it is Cauchy net in all d;.
A space is complete if all Cauchy nets converge.
Relatively compact = totally bounded.
The converse is true provided the space is complete.



A locally
convex space

In further

Locally convex spaces

Determined by a family of seminorms p;, i € I.
Seminorms gives rise to the family of semimetrics
di(x,y) = pi(x — y).

A locally convex space is a uniform space.

A set is totally bounded if it is totally bounded in all d;.
A net is a Cauchy net if it is Cauchy net in all d;.

A space is complete if all Cauchy nets converge.
Relatively compact = totally bounded.

The converse is true provided the space is complete.

M is a Hilbert module over a W*-algebra. From now to
the end.



PF topologies

Paschke-Frank topologies

Weak and strong topology:

weak 7 generated by functionals of the form
M3 x — o({y,x)), y € M, ¢ a normal state.
Seminorms |p((y, x))|.

strong T generated by seminorms ¢((x,x))¥/?, ¢ a
normal state.

Always 71 C 7.
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Normal states Positive functionals ¢ € Ay, ||p|| = 1. Then (1) = 1.
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PF topologies

Normal states

Selfdual
module

Paschke-Frank topologies

Weak and strong topology:

weak 7 generated by functionals of the form
M3 x — o({y,x)), y € M, ¢ a normal state.
Seminorms |p((y, x))|.

strong T generated by seminorms ¢((x,x))¥/?, ¢ a
normal state.

Always 71 C 7.

Positive functionals ¢ € Ay, ||p|| = 1. Then (1) = 1.

To continue, we need a definition of a dual module.

A module M over A such that all A-linear maps from M
to A are of the form x — (y, x) for some y € M.

Otherwise, the space of A linear maps forms another
module M’ — the dual module. M’ is always selfdual.



Properties of PF topologies

Weak PF If M is selfdual, then M is a dual Banach space.
topology 71 — exactly weak-* topology.

(Paschke TAMS 1973).
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Properties of PF topologies

If M is selfdual, then M is a dual Banach space.
71 — exactly weak-* topology.

(Paschke TAMS 1973).

The following is equivalent:
M is selfdual;
The unit ball in M is complete in 71;

The unit ball in M is complete in 7.

(Frank ZAA 1990)



Weak PF
topology

Completeness
[
[

PF are not
suitable

Properties of PF topologies

If M is selfdual, then M is a dual Banach space.
71 — exactly weak-* topology.

(Paschke TAMS 1973).
The following is equivalent:
M is selfdual;

The unit ball in M is complete in 71;

The unit ball in M is complete in 7.
(Frank ZAA 1990)

71 is too weak — the unit ball in /2(A) is compact.
To is too strong — the unit ball in A” is not compact.



Definition

Here is the right topology — 7!

M = [2(A) - the standard Hilbert module. Topology T
generated by seminorms

Pe,y(X) =

“+oo
> e,
j=1

where ¢ is a normal state and y = (11,752, ... ) satisfies

sup (7 ;) < +oo. (1)
J

Note that y need not to € /2(A). However, for any
y = (m1,m2,...), the sequence nj/gp(nj’-knj)l/z fulfills (1).



Properties
1
2

Properties of 7

1 C T C T

The unit ball in /?(A) is not complete in all 71, 7, 7
(I?(A) is not selfdual);

Restricted to A" (forget all after n-th entry) 71 = 7;

The unit ball in A" is compact in 7, hence totally
bounded (A" is selfdual);

The unit ball in /?(A) is not totally bounded in 7.



Property 1

71 CT7TC .




Property 1

1 71 CT7TC T

Proof

nCT y=(mm...)EP(A) = ¢G=mn/p(nn)"? fulfils

(1). Hence
+oo
o[> mg
j=1

400 ; +o0 2
< (Zs@(n}‘m)) (Z@(Cf&jﬁ) =
j=1 j=1

= o((y,¥))? Po2(%).

1

inj)2e ij

e((y, x))| =




Property 1 - continuation

TC1 (1)~ ©(*n) — a semi inner product. Hence

lo(€n)| < (€°€)2 (1 n)?.

Peu (X ZM)UJ&J ’2<Z(’O£J£J (1)
j=1



TC T

Remark

Property 1 - continuation

(&,m) — @(&*n) — a semi inner product. Hence

lo(€n)| < (€°€)2 (1 n)?.

Py (x Z!s@m&, !2<Zs&£,£f o (nfn;)
j=1

These proofs works also for

P(AY = {x = (&n)n>1 | sup, |1 327 6/&ll < +oo}.



Property 2

The unit ball in /2(A) is not complete in all 71, 7, 7
(I?(A) is not selfdual).




Property 2

2 The unit ball in /2(A) is not complete in all 71, 7, T
(12(A) is not selfdual).

Proof

Unit ball in  /?(A)’ 3 x* Cauchy net = £ C. net in A. (Choose
IP(A)'is =1, 7, =0 for j # k.) Hence £2 5 &, and
complete Sk |o(ire)[2 — YK [o(nr€)|>

Let 1 = &;/(£5€))3. We get

k k k
ng §J gj Z‘ 771 gj = Z 77ng =
Jj=1 Jj=1 Jj=1
<|lx|| <1

Take limy_, o to conclude x = (&1, &a,...) € 12(A).



Property 2 - continuation

Finally

k 400
Do leme)—emie )P <> L&) =P <,
j=1 j=1

take the limit over 8 and limit as kK — +oc.



The ball in
I?(A) is dense
in the ball in
/Z(A)/

Property 2 - continuation

Finally

Z e(nj&)—p(mie) )P < Z (&) —emie) )P <,
Jj=1

take the limit over 8 and limit as kK — +oc.

(€1,62,...,62,0,0,...) =x, = x = (&1,...) € I’(A).
Indeed, by normality of ¢ we have

Py (x—xn)* < p({x = xn, Zs & —o,

as n — +oo.



Properties 3 & 4

Restricted to A" (forget all after n-th entry) 71 = 7.




Properties 3 & 4

Restricted to A" (forget all after n-th entry) 71 = 7.

Pe.y(x) = ( (0 &) ) <

77_/ §J)| = Z |SO( ZJ’

3

where z; = (0,...,0,7;,0,...,0).




Properties 3 & 4

3  Restricted to A" (forget all after n-th entry) 7 = 7.
TCT

1
2

Pey(X) = Z |‘P(777§j)|2 <
=1

< e = lel(z, ),
=1 =1

where z; = (0,...,0,7;,0,...,0).

4 The unit ball in A" is compact in 7, hence totally
bounded (A" is selfdual).

Follows easily from the previous.



Property 5

The unit ball in /?(A) is not totally bounded in 7.




Property 5

The unit ball in /2(A) is not totally bounded in 7.

There is a totally discrete sequence.

Choose 7; = 1 for all j and ¢ arbitrary. Then
Poy(en — em) = V2.




" Compact” = compact

T is "compact” = A is compact (i.e. maps bounded
into totally bounded sets).




Proposition

Proof

1

" Compact” = compact

T is "compact” = A is compact (i.e. maps bounded
into totally bounded sets).

Observe the following three facts:

Projections P, : I?(A) — I2(A),
Po(&1s- -y &n sty -+ ) = (&1, -+, &n, 0,...) make an
approximate identity in the algebra of "compact”
operators;

The property of being compact is A linear;

The property of being compact is stable under limits,
either uniform, or in 7.



Proposition

Proof

1

" Compact” = compact

T is "compact” = A is compact (i.e. maps bounded
into totally bounded sets).

Observe the following three facts:

Projections P, : I?(A) — I2(A),

Po(&1s- -y &n sty -+ ) = (&1, -+, &n, 0,...) make an
approximate identity in the algebra of "compact”

operators;

The property of being compact is A linear;

The property of being compact is stable under limits,
either uniform, or in 7.

The first of them is well known. The last two are easy
to derive.



”Compact” = compact — continuation

By 2 and 3, it suffices to consider
x =0y ,(x)=2z(y,x).




" Compact” = compact — continuation

Reduce to rank By 2 and 3, it suffices to consider
1 x—0,,(x)=2z(y,x).

ran®© C A" If z = ¢;(, ¢ € A, we have compactness of the unit ball
in A",



Reduce to rank
1

ran®© C A"

Appr. by basis

" Compact” = compact — continuation

By 2 and 3, it suffices to consider

x =0, ,(x)=z(y,x).

If z=¢;(, ( € A, we have compactness of the unit ball
in A"

Otherwise, if z = ((1,¢2,...). Then z = Zfzof &
(conv. in the norm). Since
18y.2 = Oyl < llyllllz = 2|, we have

= |im E ©
yz n—>+oo Y€iG



Compact = "compact” — a partial
result

If A= B(H) the converse is true: If T is compact then
T is "compact”.




Compact = " compact” — a partial
result

Proposition If A= B(H) the converse is true: If T is compact then
T is "compact”.

Proof (idea) The proof is carried out as follows:
For T not "compact” construct a totally discrete
sequence in the image of the unit ball. The proof is
highly technical (many indices, €'s etc.) — hence
omitted. The following Lemma plays the key roll.



Proposition

Proof (idea)

The Lemma

Compact = " compact” — a partial
result

If A= B(H) the converse is true: If T is compact then
T is "compact”.

The proof is carried out as follows:

For T not "compact” construct a totally discrete
sequence in the image of the unit ball. The proof is
highly technical (many indices, €'s etc.) — hence
omitted. The following Lemma plays the key roll.

Let a, € B(H) be a sequence of positive operators, such
that ||an|| > 0. Then there is a normal state ¢, and
unitaries vy, v, such that p(viasv,) > 6.



A counterexample

For A Let p; € A be mutually orthogonal nontrivial
commutative projections. Then T : [2(A) — I?(A),

Tx = T(517§2, . ) = (P1517P2527 o )

is compact, but not " compact”



For A
commutative

Proof (outline)

A counterexample

Let p; € A be mutually orthogonal nontrivial
projections. Then T : 12(A) — [2(A),

Tx = T(§17§2, . ) = (P1517P2£27~ : )

is compact, but not " compact”

To see T is not "compact” observe that

||T — P,T|| =1 contradicting P, is an approximate
identity.

To see T is compact, note for any seminorm

p(T — P,T) — 0. This preserves compactness.



For A
commutative

Proof (outline)

A counterexample

Let p; € A be mutually orthogonal nontrivial
projections. Then T : 12(A) — [2(A),

Tx = T(§17§2, . ) = (P1517P2£27~ : )

is compact, but not " compact”

To see T is not "compact” observe that

||T — P,T|| =1 contradicting P, is an approximate
identity.

To see T is compact, note for any seminorm

p(T — P,T) — 0. This preserves compactness.

Also the sequence p, contradicts the Lemma.



Problems for further work

Describe W*-algebras for which the Lemma is true. We
suspect it is valid for factors.
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Problems for further work

Describe W*-algebras for which the Lemma is true. We
suspect it is valid for factors.

Extend the presented results to modules over
C*-algebras using their enveloping W*-algebras. For A
C*-algebra, its W*-envelope is its second dual A**
which appears to be isomorphic to the bicommutant
7(A)”, where 7 is the universal representation.



Problem 1

Problem 2

Problem 3

Problems for further work

Describe W*-algebras for which the Lemma is true. We
suspect it is valid for factors.

Extend the presented results to modules over
C*-algebras using their enveloping W*-algebras. For A
C*-algebra, its W*-envelope is its second dual A**
which appears to be isomorphic to the bicommutant
7(A)”, where 7 is the universal representation.

Extend the presented results to any module over A (not
only for I(A), i.e. make seminorms independent of
coordinates. It might be difficult.



Thanks for your attention

Complete proofs at
https://arxiv.org/abs/1610.06956




Thanks for your attention

Complete proofs at
https://arxiv.org/abs/1610.06956

To make it easier to remember:

1610 Henri IV of France assassinated by Ravaillac
069 it is easy to remember. | guess?!
56 due to previous students often get 5 and 6
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