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A Banach algebra with an involution such that ||a*a|| = [|a||2.

Any C* algebra has a representation as a subalgebra of B(H) for some
Hilbert space H — Gelfand-Naimark theorem.
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Algebras

A Banach algebra with an involution such that ||a*al| = ||a||?.

Any C* algebra has a representation as a subalgebra of B(H) for some
Hilbert space H — Gelfand-Naimark theorem.

A C*-algebra that has a predual.

Such a predual is unique. Its elements are called normal. W*-algebra
has a strongly (or weakly, or ultraweakly, etc.) closed representation.

C(K) is a C*-algebra, but not W*.
B(H) is a W*-algebra. B(H). = &;.
L%°(X; p) is a W*-algebra. L®(X; p). = L1(X; p).



Hilbert C* modules

Hilbert C*-module A right module M over A with an A-valued inner product such that
1 (a,a) >0, (a,a) =0 a=0;
2 (b,a) = (a,b)";
3 (a, bi A + bz)\2> = (a, b1> A+ (a, b2> Ao,
Here, a, b, bj € M, \; € A.
A Hilbert C*-module need not to have a basis (as any module).



Hilbert C* modules

Hilbert C*-module A right module M over A with an A-valued inner product such that
1 (a,a) >0, (a,a) =0 a=0;
2 (b,a) = (a,b)";
3 (a, bi A + bz)\2> = (a, b1> A+ (a, b2> Ao,
Here, a, b, bj € M, \; € A.
A Hilbert C*-module need not to have a basis (as any module).
Standard Hilbert /2(A) = {x = (¢1,62,...) | § € A, X 7€ conv. in || - [[}.

et Standard Hilbert module over a unital algebra has a (Riesz) basis

e =(0,0,...,1,0,...), 1 is the unit of A placed on j-th entry.



" Compact” operators

"Compact” Closed linear span of the operators ©, , : M — M, ©, ,(x) = z (y, x).

rators on . .
ope atods Io I\; Such operators need not to map bounded sets into relatively compact.
modute Hence the quotation marks.
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Problem Find a topology on /?(A) such that "compact” operators map bounded
into totally bounded sets.

If possible, prove the converse, if A maps bounded into totally bounded
sets then A is "compact”.



” Compact”
operators on a
module M

Problem

Result

" Compact” operators

Closed linear span of the operators ©, , : M — M, ©, .(x) = z (y, x).

Such operators need not to map bounded sets into relatively compact.
Hence the quotation marks.

Find a topology on /2(A) such that " compact” operators map bounded
into totally bounded sets.

If possible, prove the converse, if A maps bounded into totally bounded
sets then A is "compact”.

The first problem is solved. The second partially.



Locally convex spaces

Determined by a family of seminorms p;, i € /.
Seminorms gives rise to the family of semimetrics d;(x,y) = pi(x — y).

A locally convex space is a uniform space.

A locally convex
space



Locally convex spaces

A locally convex Determined by a family of seminorms p;, i € .
space Seminorms gives rise to the family of semimetrics di(x,y) = pi(x — y).
A locally convex space is a uniform space.

A set is totally bounded if it is totally bounded in all d;.
A net is a Cauchy net if it is Cauchy net in all d;.

A space is complete if all Cauchy nets converge.
Relatively compact = totally bounded.

The converse is true provided the space is complete.



Locally convex spaces

A locally convex Determined by a family of seminorms p;, i € .
space Seminorms gives rise to the family of semimetrics di(x,y) = pi(x — y).
A locally convex space is a uniform space.

A set is totally bounded if it is totally bounded in all d;.
A net is a Cauchy net if it is Cauchy net in all d;.

A space is complete if all Cauchy nets converge.
Relatively compact = totally bounded.

The converse is true provided the space is complete.

In further M is a Hilbert module over a W*-algebra. From now to the end.



Paschke-Frank topologies

PF topologies Weak and strong topology:
m  weak 71 generated by functionals of the form M 3 x — ¢((y, x)),
y € M, ¢ a normal state. Seminorms |¢({y, x))|.

m strong 7> generated by seminorms ¢((x, x))'/2, ¢ a normal state.

Always 71 C 1.
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Paschke-Frank topologies

PF topologies Weak and strong topology:

m  weak 71 generated by functionals of the form M 3 x — ¢((y, x)),
y € M, ¢ a normal state. Seminorms |¢({y, x))|.

m strong 7> generated by seminorms ¢((x, x))'/2, ¢ a normal state.

Always 71 C 1.

Normal states Positive functionals ¢ € A, ||¢|| = 1. Then (1) = 1.

To continue, we need a definition of a dual module.

Selfdual module A module M over A such that all A-linear maps from M to A are of the
form x — (y,x) for some y € M.

Otherwise, the space of A linear maps forms another module M’ — the
dual module. M’ is always selfdual.



Properties of PF topologies

If M is selfdual, then M is a dual Banach space.
71 — exactly weak-* topology.

(Paschke TAMS 1973).




Properties of PF topologies

Weak PF topology If M is selfdual, then M is a dual Banach space.
71 — exactly weak-x topology.

(Paschke TAMS 1973).

Completeness The following is equivalent:
m M is selfdual;
m  The unit ball in M is complete in 7;

m  The unit ball in M is complete in 7.

(Frank ZAA 1990)



Weak PF topology

Completeness
|
|

PF are not suitable

Properties of PF topologies

If M is selfdual, then M is a dual Banach space.
71 — exactly weak-x topology.

(Paschke TAMS 1973).
The following is equivalent:
M is selfdual;

The unit ball in M is complete in 1q;

The unit ball in M is complete in 1.
(Frank ZAA 1990)

71 is too weak — the unit ball in /?(A) is compact.
To is too strong — the unit ball in A” is not compact.



Definition

Here is the right topology — 7!

M = I?(A) - the standard Hilbert module. Topology 7 generated by
seminorms

Pe,y(x) =

+oo

> e,

j=1

where ¢ is a normal state and y = (11,72, ... ) satisfies

sup (1) < +oo. (1)
J

Note that y need not to € /2(A). However, for any y = (1,72, ... ),
the sequence 77j/80(77f77j)1/2 fulfills (1).



Properties of 7

Properties
1 71 CT1TC T

2 The unit ball in /2(A) is not complete in all 71, 7, 72 (/?(A) is not
selfdual);

3  Restricted to A" (forget all after n-th entry) 7 = 7;

4  The unit ball in A" is compact in 7, hence totally bounded (A" is
selfdual);

5 The unit ball in /2(A) is not totally bounded in 7.



Property 1

1 CTC To.




Property 1

1 CT1TC .

y=nm,. ..)elPA)=¢= 771-/g0(771’-"77j)1/2 fulfils (1). Hence

“+o0o
o | 2wy
Jj=1

—+00 % +o0 %
< (Z @(n}‘nj)) (Z |90(Cf§j)|2) =
j=1

j=1

<

+oo
S o) ()

j=1

lp((y, ) =

= (Y, )2 Ppz(x)-




Property 1 - continuation

(&,n) — ©(£*n) — a semi inner product. Hence
lp(E ) < w(§7E)2p(n™n)>.

+o00 +o0o
Poy ()2 =D o) <> (&) enim) <

j=1 j=1

+oo
<D e(&€) = el(x.x).
Jj=1




Property 1 - continuation

TC1 (&n)— ¢(&*n) — a semi inner product. Hence
lp(§* )| < p(§7€)2p(n™n)>.

Pcpy Z|‘PUJ§J |2<ZSD§J€J
< Zw(&f@) = p({x,x)).
j=1

Remark These proofs works also for

P(AY = {x = (&n)nz1 | sup, |1 327 &/¢jl| < +oo}.

77] 77_]



Property 2

The unit ball in /?(A) is not complete in all 71, 7, 72 (/?(A) is not
selfdual).




Property 2

2 The unit ball in /2(A) is not complete in all 71, 7, 72 (/2(A) is not
selfdual).

Proof

Unit ball in °(A) is /(A) 3 x* Cauchy net = £ C. net in A. (Choose nx =1, n; = 0 for
complete ;£ k.) Hence & ™% &, and Sy (&) — 01 le (6P

Let n; = gj/QO(fffj)%- We get

k
> (&) = Z\W@@ —hmZI@anj <
j=1

SHXHSL

Take limy_, o to conclude x = (&1,&,...) € 12(A).



Property 2 - continuation

Finally

k +o0o
> lemiet) — e <3 lelnel) — e )P <,

take the limit over 8 and limit as k — +oc.



Property 2 - continuation

Finally

(&) — p(n;el)I? ZI@ mE) — e )P <,

HM»

take the limit over 3 and limit as kK — +o0.

The ball in ?(A)is  (£1,&,...,6,,0,0,...) =x, = x = (&1,...) € P(A).
dense in the ball in Indeed, by normality of ¢ we have

/2(A)/
Pey (X — ) < @((x = xn, x (Z 5_/ 5_/) 0,

as n — +4o0.



Properties 3 & 4

Restricted to A" (forget all after n-th entry) 7 = 7.




Properties 3 & 4

Restricted to A" (forget all after n-th entry) 7 = 7.

Poy(x)= [ Iso(nj-‘sj)lz) <
j=1

n

< el = lel{zi X)),
=1

Jj=1

where z; = (0,...,0,7,,0,...,0).




Properties 3 & 4

3 Restricted to A" (forget all after n-th entry) 7 = 7.

TCT

NI

ng)/(X Z‘(P 77151 S

n

Z njfj)‘—zw (zj,x

j=1 j=1
where z; = (0,...,0,7;,0,...,0).

4  The unit ball in A" is compact in 7, hence totally bounded (A" is
selfdual).

Follows easily from the previous.



Property 5

The unit ball in /?(A) is not totally bounded in 7.




Property 5

The unit ball in /?(A) is not totally bounded in 7.

There is a totally discrete sequence.

Choose 7; = 1 for all j and ¢ arbitrary. Then p, (e, — em) = V2.




” Compact” = compact

T is "compact” = A is compact (i.e. maps bounded into totally
bounded sets).




”Compact” = compact

Proposition T is "compact” = A is compact (i.e. maps bounded into totally
bounded sets).

Proof Observe the following three facts:

1 Projections P, : I2(A) — I?(A),
Po(é1y - o &n&ntts o) = (€15 -+, &n, 0,... ) make an approximate
identity in the algebra of "compact” operators;

2 The property of being compact is A linear;

3  The property of being compact is stable under limits, either uniform, or
in 7.



”Compact” = compact

Proposition T is "compact” = A is compact (i.e. maps bounded into totally
bounded sets).

Proof Observe the following three facts:

1 Projections P, : I2(A) — I?(A),
Po(é1y - o &n&ntts o) = (€15 -+, &n, 0,... ) make an approximate
identity in the algebra of "compact” operators;

2 The property of being compact is A linear;
3  The property of being compact is stable under limits, either uniform, or
in 7.

The first of them is well known. The last two are easy to derive.



” Compact” = compact — continuation

By 2 and 3, it suffices to consider x — ©, ,(x) = z (y, x).




”Compact” = compact — continuation

Reduce to rank 1 By 2 and 3, it suffices to consider x — ©, ,(x) = z (y, x).

ran© C A" If z=ej(, ¢ € A, we have compactness of the unit ball in A"



Reduce to rank 1
ran®© C A"

Appr. by basis

”Compact” = compact — continuation

By 2 and 3, it suffices to consider x — ©, ,(x) = z (y, ).
If z=e;j(, ¢ € A, we have compactness of the unit ball in A",

Otherwise, if z=((1,(2,...). Then z = J+_1 ej¢j (conv. in the
norm). Since ||©, , — © "], we have

yz— I|m Z@y761<1

n—-+o00



Compact = "compact” — a partial result

If A= B(H) the converse is true: If T is compact then T is
"compact”.




Compact = " compact” — a partial result

Proposition If A= B(H) the converse is true: If T is compact then T is
" compact”.

Proof (idea) The proof is carried out as follows:
For T not "compact” construct a totally discrete sequence in the
image of the unit ball. The proof is highly technical (many indices, ¢'s
etc.) — hence omitted. The following Lemma plays the key roll.



Compact = " compact” — a partial result

Proposition If A= B(H) the converse is true: If T is compact then T is
" compact”.

Proof (idea) The proof is carried out as follows:
For T not "compact” construct a totally discrete sequence in the
image of the unit ball. The proof is highly technical (many indices, ¢'s
etc.) — hence omitted. The following Lemma plays the key roll.

The Lemma Let a, € B(H) be a sequence of positive operators, such that
||an|| > 6. Then there is a normal state ¢, and unitaries v, v, such
that p(viapr,) > 0.



A counterexample

Let p; € A be mutually orthogonal nontrivial projections. Then
T : 2(A) — 2(A),

Tx = T(€17€27 .. ) = (p1§1’p2§2a .. )

is compact, but not " compact”




A counterexample

For A commutative Let p; € A be mutually orthogonal nontrivial projections. Then
T : 12(A) — I?(A),

Tx = T(&,&, ... ) = (pi&1, p2bo, .. .)

is compact, but not " compact”

Proof (outline) To see T is not "compact” observe that || T — P, T|| = 1 contradicting
P, is an approximate identity.
To see T is compact, note for any seminorm p(T — P,T) — 0. This
preserves compactness.



For A commutative

Proof (outline)

A counterexample

Let p; € A be mutually orthogonal nontrivial projections. Then
T : 12(A) — I?(A),

Tx = T(&,&, ... ) = (pi&1, p2bo, .. .)

is compact, but not " compact”

To see T is not "compact” observe that || T — P, T|| = 1 contradicting
P, is an approximate identity.

To see T is compact, note for any seminorm p(T — P,T) — 0. This
preserves compactness.

Also the sequence p, contradicts the Lemma.



Problems for further work

Describe W*-algebras for which the Lemma is true. We suspect it is
valid for factors.
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Problems for further work

Describe W*-algebras for which the Lemma is true. We suspect it is
valid for factors.

Extend the presented results to modules over C*-algebras using their
enveloping W*-algebras. For A C*-algebra, its W*-envelope is its
second dual A** which appears to be isomorphic to the bicommutant
7(A)”, where 7 is the universal representation.



Problem 1

Problem 2

Problem 3

Problems for further work

Describe W*-algebras for which the Lemma is true. We suspect it is
valid for factors.

Extend the presented results to modules over C*-algebras using their
enveloping W*-algebras. For A C*-algebra, its W*-envelope is its
second dual A** which appears to be isomorphic to the bicommutant
7(A)”, where 7 is the universal representation.

Extend the presented results to any module over A (not only for /2(A),
i.e. make seminorms independent of coordinates. It might be difficult.



Thanks for your attention

Complete proofs at https://arxiv.org/abs/1610.06956
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To make it easier to remember:

1610 Henri IV of France assassinated by Ravaillac
069 it is easy to remember. | guess?!
56 due to previous students often get 5 and 6
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